Readings: Linz $8 \mathcal{W}$ Wang, Sections 7.1,7.2,7.3,7.5 (through the bottom of p.191).
1.
(a) Implement the bisection method in MATLAB to find the smallest positve root of

$$
\begin{equation*}
e^{-x}=\sin x \tag{1}
\end{equation*}
$$

(b) Solve (1) using the secant method. (Use either a calculator or MATLAB .)
(c) Solve (1) using the MATLAB code FZERO.
2. Write a MATLAB function Newton $(f, d f, x, t o l)$ to implement Newton's method. You need to write function m-files $f(x)$ and $d f(x)\left(f^{\prime}(x)\right)$. The input x is the initial quess and tol is the desired accuracy which should be attained when $\left|x_{i+1}-x_{i}\right|<t o l$. You should limit the number of iterations and report a failure to converge. Use the error function.
(1) Try your function to solve equation (1). Print out the iterates and the function values.
(b) Use your function to find the first ten positive solutions of

$$
x=\tan x .
$$

(Zero is not a positive number.) Note: The careful selection of x is critical.
(c) Try the function on the double root $x=1$ of

$$
x^{3}+3 x^{2}-9 x+5=0 .
$$

Use $x=2$ and tol $=10^{-5}$. What is the rate of convergence ?
3. Let $f(x)=\arctan (x)$. Then f has a unique zero: $x=0$.
(a) Write out the formula for the Newton iterations for finding the zero of f.
(b) What happens to the iterations if we start with $x_{0}=1$?
(c) What happens to the iterations if we start with $x_{0}=2$? Explain this result by drawing a picture of what is happening.
4. Which of the following iterations will converge to the indicated fixed point α (provided x_{0} is sufficiently close to α)? If it does converge, give the order of convergence; for linear convergence, give the rate of linear convergence.

$$
\begin{equation*}
x_{n+1}=-16+6 x_{n}+\frac{12}{x_{n}} \quad \alpha=2 \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
x_{n+1}=\frac{2}{3} x_{n}+\frac{1}{x_{n}^{2}} \quad \alpha=3^{1 / 3} \tag{b}
\end{equation*}
$$

(c)

$$
x_{n+1}=\frac{12}{1+x_{n}} \quad \alpha=3
$$

5. Let $g(x)=2 e^{-x}$. If we draw the graph of g we see that it has a fixed point α where $\alpha \approx$.85. If we take $x_{0}=.8$ and use the fixed point iterations $x_{n+1}=2 e^{-x_{n}}$ we find it takes about 200 iterations until two succesive iterates are identical in MATLAB, in 'format long'. However, investigate what happens when we use the Aitken extrapolation scheme

$$
y=g(x), \quad z=g(y), \quad x=z-\frac{(z-y)^{2}}{((z-y)-(y-x))} .
$$

6 A long conducting rod of diameter D meters and electrical resistance R per unit length is in a large enclosure whose walls (far away from the rod) are kept at temperature $T_{s}^{\circ} C$. Air flows past the rod at temperature T_{∞}. If an electrical current I passes through the rod, the temperature of the rod eventually stabilizes to T, where T satisfies

$$
Q(T)=\pi D h\left(T-T_{\infty}\right)+\pi D \epsilon \sigma\left(T^{4}-T_{s}^{4}\right)-I^{2} R=0
$$

where

$$
\begin{aligned}
\sigma & =\text { Stefan-Boltzman constant }=5.67 \cdot 10^{-8} \text { Watts } / \text { meter }^{2} \text { Kelvin }^{4}, \\
\epsilon & =\text { rod surface emissivity }=0.8, \\
h & =\text { heat transfer coefficient of air flow }=20 \mathrm{Watts} / \text { meter }^{2} \text { Kelvin }, \\
T_{\infty} & =T_{s}=25^{\circ} C, \\
D & =0.1 \text { meter }, \\
I^{2} R & =100
\end{aligned}
$$

Use FZERO to find the steady state temperature T of the rod.

