1. Define $f(x)$ by

$$
f(x)=\frac{1}{1+x^{2}}, \quad-5 \leq x \leq 5
$$

(a) For $n=5,10,15$, plot $p_{n}(x)$, the polynomial interpolating $f(x)$ at $n+1$ equally spaced points, along with the graph of $f(x)$. Use the MATLAB functions POLYFIT and POLYVAL. Observe what is happening to the graphs. Where is the polynomial fit getting better? Where is it getting worse ?
(b) Repeat part (a) but now use the interpolation points

$$
x_{j}=5 \cos \frac{(2 j-1) \pi}{2 n+2}, \quad j=1, \ldots, n+1
$$

What difference do you observe ?
2. Ex. 3.10, p.90, Shampine, Allen 8 Preuss.
3. For $f(x)=\tan (x)$ we are given that

$$
f(0)=0, f^{\prime}(0)=1, f(\pi / 4)=1, f^{\prime}(\pi / 4)=2 .
$$

Calculate an approximation to $f(\pi / 8)$ using cubic Hermite interpolation. Compare the result with $f(\pi / 8)=\sqrt{2}-1$.
4. Ex. 3.16, p.98, Shampine, Allen ${ }^{6}$ Preuss.
5.
(a) Determine all values of a, b, c, d, e for which the following function is a cubic spline:

$$
S(x)=\left\{\begin{array}{cl}
a(x-2)^{2}+b(x-1)^{3}, & 0 \leq x \leq 1 \\
c(x-2)^{2}, & 1 \leq x \leq 3 \\
d(x-2)^{2}+e(x-3)^{3}, & 3 \leq x \leq 4
\end{array}\right.
$$

(b) Determine the values of the parameters so that the cubic spline interpolates the data $(0,26),(1,7),(4,25)$.
6. Ex. 3.22, p.115, Shampine, Allen $\& \mathcal{F}$ Preuss. Use the MATLAB function SPLINE. You should produce a graph.
7. Repeat the previous problem using $p_{10}(x)$, the polynomial of degree ≤ 10 which interpolates f at the given points. How does it do compared with the spline ?
8. Take the data of problem 6 and find and plot the polynomials of degree 2,3 and 4 which best fit this data in the sense of least squares. The MATLAB functions POLYVAL and POLYFIT give you exactly what you need.
9. For the data of problem 6 find the cubic polynomial $p_{3}(x)=p_{0}+p_{1} x+p_{2} x^{2}+p_{3} x^{3}$ interpolating the data in the sense of least squares by constructing the 11×4 data matrix A and finding the vector $\left(p_{0}, p_{1}, p_{2}, p_{3}\right)^{T}$ in four different ways:
(a) By using the backslash operator.
(b) By forming and solving the normal equations. Note the condition number of the matrix $A^{T} A$.
(c) By using the $Q R$ decomposition.
(d) By using the Singular-Value Decomposition.

All of this is quite easy in MATLAB. Compare with the values found in problem 8.

