1.

(a) Implement the bisection method in MATLAB to find the smallest positive root of

$$
\begin{equation*}
e^{-x}=\tan x \tag{1}
\end{equation*}
$$

(b) Solve (1) using the secant method. (Use either a calculator or MATLAB.)
2. Write a MATLAB function Newton $(f, d f, x, t o l)$ to implement Newton's method. You need to supply functions $f(x)$ and $d f(x)\left(f^{\prime}(x)\right)$. The input x is the initial guess and tol is the desired accuracy which should be attained when $\left|x_{i+1}-x_{i}\right|<t o l$. You should limit the number of iterations and report a failure to converge. Use the error function.
(a) Try your function to solve equation (1). Print out the iterates and the function values.
(b) Use your function to find the first ten positive solutions of

$$
x=\cot x .
$$

Note: The careful selection of x is critical.
(c) Try the function on the double root $x=2$ of

$$
x^{3}-x^{2}-8 x+12=0
$$

Use $x=3$ and tol $=10^{-6}$. What is the rate of convergence ?
(d) Newton can be used to find complex roots also. By starting with a non-real initial guess, find the complex roots of

$$
x^{3}+2 x-5=0
$$

3. Write down two fixed point procedures for finding a zero of the function $f(x)=$ $2 x^{2}+6 e^{-x}-4$. Check that they converge.
4. Which of the following iterations will converge to the indicated fixed point α (provided x_{0} is sufficiently close to α)? If it does converge, give the order of convergence; for linear convergence, give the rate of linear convergence.

$$
\begin{equation*}
x_{n+1}=-16+6 x_{n}+\frac{12}{x_{n}} \quad \alpha=2 \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
x_{n+1}=\frac{2}{3} x_{n}+\frac{1}{x_{n}^{2}} \quad \alpha=3^{1 / 3} \tag{b}
\end{equation*}
$$

$$
\begin{equation*}
x_{n+1}=\frac{12}{1+x_{n}} \quad \alpha=3 \tag{c}
\end{equation*}
$$

5. Ex. 4.13. p.156, Shampine, Allen ξ^{3} Pruess. Use the MATLAB code FZERO.
6. Ex. 4.16. p.156, Shampine, Allen \mathcal{G} Pruess. Use the MATLAB code FZERO.
7. Solve the system

$$
x^{2}+x y^{3}=9 \quad 3 x^{2} y-y^{3}=4
$$

using Newton's method for nonlinear systems. Use each of the initial guesses $\left(x_{0}, y_{0}\right)=$ $(1.2,2.5),(-2,2.5),(-1.2,-2.5),(2,-2.5)$. Observe which root to which the method converges, the number of iterates required, and the speed of convergence. Write a MATLAB function with the initial guess as input. Be sure to take advantage of the fact that MATLAB works with vectors.
8. Ex. 5.12. p.191, Shampine, Allen \mathcal{E} Pruess. Use QUADL. You will need the MATLAB command GLOBAL to pass the value c into the integrand.
9. Consider the system $A \mathbf{x}=\mathbf{b}$ where

$$
A=\left(\begin{array}{rrrrr}
4 & -1 & 0 & -1 & 0 \\
-1 & 4 & -1 & 0 & -1 \\
0 & -1 & 4 & -1 & 0 \\
-1 & 0 & -1 & 4 & -1 \\
0 & -1 & 0 & -1 & 4
\end{array}\right)
$$

and $\mathbf{b}=(-2,-1,6,7,14)^{\prime}$. Solve the system using
(a) The Cholesky factorization of A (MATLAB: CHOL)
(b) Jacobi iteration.
(c) Gauss-Seidel iteration. (The MATLAB command TRIL might be useful.)

