AMSC/CMSC 460 SPRING 2004

SAMPLE HOUR EXAM

- 1. Suppose you have a computer which carries only 4 decimal digits and rounds. It is desired to compute $f(x) = \frac{e^x x 1}{x^2}$ at x = .001. The value of $e^{.001}$ correctly rounded to 4 decimal places is 1.001.
 - (a) Using the definition of f and the above value of $e^{.001}$ what result would the computer give for f(.001) ?
 - (b) By using Taylor's theorem and 4 digit arithmetic, find the correct value of f(.001) rounded to 4 digits.
- 2. Consider the linear system $A\mathbf{x} = \mathbf{b}$ where

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 4 \\ 3 & 6 & 7 \end{pmatrix}, \quad \mathbf{b} = \begin{bmatrix} 3 \\ 5 \\ 1 \end{bmatrix}.$$

- (a) Factor A as A = LU with L lower triangular and U upper triangular.
- (b) What happens if we try to use the decomposition found in (a) to solve $A\mathbf{x} = \mathbf{b}$? What do you conclude about this equation ?
- 3. Let $\|\mathbf{x}\|$ be a norm defined on \mathbf{R}^n .
 - (a) Define the matrix norm ||A||, defined on the set of $n \times n$ matrices, associated with this norm.
 - (b) Define the *condition number*, cond(A), associated with the above norm.
 - (c) Suppose cond A = 1000 and $A\mathbf{x} = \mathbf{b}$ is solved on a computer to give a result in which all components of the residual are less than 10ϵ . If $1 \le b_i \le 10$, $i = 1, \ldots, n$ and the computed $x_i \approx i, i = 1, \ldots, n$, what bounds can you put on the actual errors in the x_i . Assume the ∞ -norm is used.
- 4.
- (a) Find the quadratic polynomial $p_2(x)$ which interpolates the function $f(x) = \cos \frac{(x-1)\pi}{3}$ at x = 0, x = 1, x = 2. Give the Lagrange form, a Newton form, and the standard form of $p_2(x)$.
- (b) Compute $p_2(1/2)$ by Horner's method. Compare the actual value of $f(1/2) p_2(1/2)$ with the theoretical error bound for quadratic interpolation.
- 5. Let

$$s(x) = \begin{cases} x^3 - 3x^2 + 2x + 1, & 1 \le x \le 2\\ -x^3 + 9x^2 - 22x + 17, & 2 \le x \le 3 \end{cases}$$

Is s(x) a cubic spline ? Is it a natural cubic spline ?