AMSC/CMSC 460 SPRING 2004

SAMPLE HOUR EXAM

1. Suppose you have a computer which carries only 4 decimal digits and rounds. It is desired to compute $f(x)=\frac{e^{x}-x-1}{x^{2}}$ at $x=.001$. The value of $e^{.001}$ correctly rounded to 4 decimal places is 1.001 .
(a) Using the definition of f and the above value of $e^{.001}$ what result would the computer give for $f(.001)$?
(b) By using Taylor's theorem and 4 digit arithmetic, find the correct value of $f(.001)$ rounded to 4 digits.
2. Consider the linear system $A \mathbf{x}=\mathbf{b}$ where

$$
A=\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 4 \\
3 & 6 & 7
\end{array}\right), \quad \mathbf{b}=\left[\begin{array}{l}
3 \\
5 \\
1
\end{array}\right]
$$

(a) Factor A as $A=L U$ with L lower triangular and U upper triangular.
(b) What happens if we try to use the decomposition found in (a) to solve $A \mathbf{x}=\mathbf{b}$? What do you conclude about this equation?
3. Let $\|\mathbf{x}\|$ be a norm defined on \mathbf{R}^{n}.
(a) Define the matrix norm $\|A\|$, defined on the set of $n \times n$ matrices, associated with this norm.
(b) Define the condition number, cond (A), associated with the above norm.
(c) Suppose cond $A=1000$ and $A \mathbf{x}=\mathbf{b}$ is solved on a computer to give a result in which all components of the residual are less than 10ϵ. If $1 \leq b_{i} \leq 10, i=1, \ldots, n$ and the computed $x_{i} \approx i, i=1, \ldots, n$, what bounds can you put on the actual errors in the x_{i}. Assume the ∞-norm is used.
4.
(a) Find the quadratic polynomial $p_{2}(x)$ which interpolates the function $f(x)=$ $\cos \frac{(x-1) \pi}{3}$ at $x=0, x=1, x=2$. Give the Lagrange form, a Newton form, and the standard form of $p_{2}(x)$.
(b) Compute $p_{2}(1 / 2)$ by Horner's method. Compare the actual value of $f(1 / 2)-$ $p_{2}(1 / 2)$ with the theoretical error bound for quadratic interpolation.
5. Let

$$
s(x)=\left\{\begin{array}{cc}
x^{3}-3 x^{2}+2 x+1, & 1 \leq x \leq 2 \\
-x^{3}+9 x^{2}-22 x+17, & 2 \leq x \leq 3
\end{array}\right.
$$

Is $s(x)$ a cubic spline ? Is it a natural cubic spline?

