AMSC/CMSC 460 Sample Second Hour Exam

1. (15 points) Find the best least squares fit by a linear function $y=\beta_{0}+\beta_{1} x$ to the data points $(-1,0),(0,2),(1,5),(2,8)$. Plot your linear function along with the data points in the $x y$ plane.
2. (35 points) Let

$$
I=\int_{-1}^{1} \frac{1}{x+4} d x=.5108256238
$$

Compute approximations to I using
(a) The 4 panel trapezoid rule.
(b) The 4 panel Simpson's rule.
(c) The two point Gauss-Legendre rule. (Recall that the nodes for this are $\pm \frac{1}{\sqrt{3}}$.) Which method gives the best result ?
3. (35 points) Let $f(x)=x-\frac{2}{x}$. The positive root of f is $\sqrt{2}$.
(a) Let $x_{0}=2, x_{1}=1$. Use the secant method to find two new approximations to $\sqrt{2}, x_{2}$ and x_{3}.
(b) What is the formula for Newton's method in this case ?
(c) Will the iteration scheme

$$
x_{n+1}=2.5 x_{n}-.75 x_{n}^{3}, x_{0} \text { given, } 1 \leq x_{0} \leq 2
$$

converge ? Explain.
(d) Find c so that the iteration scheme $x_{n+1}=x_{n}+c f\left(x_{n}\right)$ is convergent (given an appropriate starting value x_{0}).
4. (15 points) We wish to solve the system

$$
x^{2} y+y^{2}-x=2, \quad 3 x+y-x^{2} y^{2}=2
$$

by Newton's method. If $\left(x_{0}, y_{0}\right)=(1,1)$ what is $\left(x_{1}, y_{1}\right)$? Do you think $\left(x_{1}, y_{1}\right)$ is closer to a root than $\left(x_{0}, y_{0}\right)$?

