1.

(a) Compute

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

- (b) Let $g(x) = \frac{1-\cos x}{x^2}$. Write a MATLAB script which produces a column vector x of length 10 whose i^{th} component is $g(10^{-i})$.
- (c) Here is the result of running the script produced in part (ii):

How do you account for this result ?

2.

(a) Find the LU factorization of

$$A = \begin{pmatrix} 2 & -1 & 3\\ -1 & -2 & 1\\ 1 & 1 & 2 \end{pmatrix}.$$

(b) Use the factorization to solve $A\mathbf{x} = \mathbf{b}$ where $\mathbf{b} = (1, 2, 3)^T$.

3.

(a) Find the weights ω_0 and ω_1 and the node x_1 such that the integration rule

$$I = \int_0^h f(x) \, dx \approx \omega_0 f(0) + \omega_1 f(x_1) = Q$$

is exact for all quadratic polynomials.

- (b) Is the above rule exact for cubics ?
- (c) Given that the error of the rule is of the form

$$e = I - Q = cf^{(d)}(\zeta)h^{d+1}$$

for smooth f, where $0 < \zeta < h$, find the integer d and the constant c.

- 4. Let $f(x) = 2x^3 + 2x 1$.
 - (a) Show that f(x) = 0 has one real solution, α with $0 < \alpha < 1$.
 - (b) Obtain an approximation to α in the following way: Find $p_2(x)$, the quadratic polynomial interpolating f(x) at $x = 0, x = \frac{1}{2}$ and x = 1. Then find the root of $p_2(x) = 0$ lying in [0, 1].
 - (c) Set up Newton's method for finding α and find two new approximations x_1 and x_2 starting with $x_0 = 0$.
 - (d) Let $x_0 = 0$, $x_1 = 1$. Use the secant method to find a new appoximation to α , x_2 .
 - (e) Recast the problem of solving f(x) = 0 as a fixed point problem of the form x = g(x) such that, given an appropriate starting value x_0 , the iteration $x_{n+1} = g(x_n)$ converges to α . (Do not use the Newton iterates.) Show that your scheme works
- 5. Consider the initial value problem

$$y'' + y' - 2y = 2t, \ y(0) = 0, \ y'(0) = 1$$
(1)

- (a) Transform (1) into an initial value problem for a first order system.
- (b) Compute an approximation to the solution of (1) at t = 0.2 by using two steps of Euler's method with h = 0.1. Exact values are:

$$y(0.1) = 0.095806, \ y'(0.1) = 0.923902, \ y(0.2) = 0.186243, \ y'(0.2) = 0.891722$$