1.

(a) Compute

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}
$$

(b) Let $g(x)=\frac{1-\cos x}{x^{2}}$. Write a MATLAB script which produces a column vector x of length 10 whose $i^{\text {th }}$ component is $g\left(10^{-i}\right)$.
(c) Here is the result of running the script produced in part (ii):

$$
x=\begin{array}{r}
0.49958347219743 \\
0.49999583334737 \\
0.49999995832550 \\
0.49999999696126 \\
0.50000004137019 \\
0.50004445029117 \\
0.49960036108132 \\
0 \\
0 \\
0
\end{array}
$$

How do you account for this result?
2.
(a) Find the $L U$ factorization of

$$
A=\left(\begin{array}{rrr}
2 & -1 & 3 \\
-1 & -2 & 1 \\
1 & 1 & 2
\end{array}\right)
$$

(b) Use the factorization to solve $A \mathbf{x}=\mathbf{b}$ where $\mathbf{b}=(1,2,3)^{T}$.
3.
(a) Find the weights ω_{0} and ω_{1} and the node x_{1} such that the integration rule

$$
I=\int_{0}^{h} f(x) d x \approx \omega_{0} f(0)+\omega_{1} f\left(x_{1}\right)=Q
$$

is exact for all quadratic polynomials.
(b) Is the above rule exact for cubics ?
(c) Given that the error of the rule is of the form

$$
e=I-Q=c f^{(d)}(\zeta) h^{d+1}
$$

for smooth f, where $0<\zeta<h$, find the integer d and the constant c.
4. Let $f(x)=2 x^{3}+2 x-1$.
(a) Show that $f(x)=0$ has one real solution, α with $0<\alpha<1$.
(b) Obtain an approximation to α in the following way: Find $p_{2}(x)$, the quadratic polynomial interpolating $f(x)$ at $x=0, x=\frac{1}{2}$ and $x=1$. Then find the root of $p_{2}(x)=0$ lying in $[0,1]$.
(c) Set up Newton's method for finding α and find two new approximations x_{1} and x_{2} starting with $x_{0}=0$.
(d) Let $x_{0}=0, x_{1}=1$. Use the secant method to find a new appoximation to α, x_{2}.
(e) Recast the problem of solving $f(x)=0$ as a fixed point problem of the form $x=$ $g(x)$ such that, given an appropriate starting value x_{0}, the iteration $x_{n+1}=g\left(x_{n}\right)$ converges to α. (Do not use the Newton iterates.) Show that your scheme works
5. Consider the initial value problem

$$
\begin{equation*}
y^{\prime \prime}+y^{\prime}-2 y=2 t, y(0)=0, y^{\prime}(0)=1 \tag{1}
\end{equation*}
$$

(a) Transform (1) into an inital value problem for a first order system.
(b) Compute an approximation to the solution of (1) at $t=0.2$ by using two steps of Euler's method with $h=0.1$. Exact values are:

$$
y(0.1)=0.095806, y^{\prime}(0.1)=0.923902, y(0.2)=0.186243, y^{\prime}(0.2)=0.891722
$$

