1. The Runge function is

$$
r(x)=\frac{1}{1+x^{2}}, \quad-5 \leq x \leq 5
$$

(a) For $n=5,10,15$, plot $p_{n}(x)$, the polynomial interpolating $r(x)$ at $n+1$ equally spaced points, along with the graph of $r(x)$. Use the MATLAB functions POLYFIT and POLYVAL. Observe what is happening to the graphs. Where is the polynomial fit getting better ? Where is it getting worse ?
(b) Repeat part (a) but now use the interpolation points

$$
x_{j}=5 \cos \frac{(2 j-1) \pi}{2 n+2}, \quad j=1, \ldots, n+1
$$

What difference do you observe ?
2. Given the data $(-1,2),(0,2),(1,2),(2,5)$, calculate $P_{3}(x)$, the cubic polynomial interpolating this data (by hand) in three ways:
(a) Solve the Vandemonde system.
(b) Use Lagrange Polynomials.
(c) Find the Newton form, using the divided difference table.
3. For $f(x)=\sinh x$ we are given that

$$
f(0)=0, f^{\prime}(0)=1, f(1)=1.1752, f^{\prime}(1)=1.5431
$$

Calculate an approximation to $f(0.5)$ using cubic Hermite interpolation. Compare the result with $f(0.5)=.5211$.
4. Consider the function $S(x)$ defined as

$$
S(x)=\left\{\begin{array}{cc}
28+25 x+9 x^{2}+x^{3}, & -3 \leq x \leq-1, \\
26+19 x+3 x^{2}-x^{3}, & -1 \leq x \leq 0, \\
26+19 x+3 x^{2}-2 x^{3}, & 0 \leq x \leq 3, \\
-163+208 x-60 x^{2}+5 x^{3}, & 3 \leq x \leq 4
\end{array}\right.
$$

Show that $S(x)$ is a natural cubic spline function with the knots $\{-3,-1,0,3,4\}$. (A natural cubic spline is a spline $S(x)$ which satisfies $S^{\prime \prime}\left(x_{1}\right)=S^{\prime \prime}\left(x_{N}\right)=0$) Be sure to state explicitly each of the properties of $S(x)$ which are necessary for this to be true.
5. The vapor pressure P of water (in bars) as a function of temperature $T\left({ }^{\circ} C\right)$ is

T	0	10	20	30
$\mathrm{P}(\mathrm{T})$.006107	.012277	.023378	.042433
T	40	50	60	70
$\mathrm{P}(\mathrm{T})$.073774	.12338	.19924	.31166
T	80	90	100	110
$\mathrm{P}(\mathrm{T})$.47364	.70112	1.01325	1.22341

Interpolate these data with the cubic spline $S(x)$ using the MATLAB function SPLINE and plot the results. It is also known that $P(5)=.008721, P(45)=0.095848$ and $P(95)=0.84528$. How well does $S(x)$ do at these points ?
6. Ex.3.3 p.18, Numerical Computing with MATLAB .
7. Ex.3.16 p.24, Numerical Computing with MATLAB .
8. Ex.3.17 p.24, Numerical Computing with MATLAB .
9. Ex.3.19, parts (a) \& (c) p.24, Numerical Computing with MATLAB.
10. Ex.5.7 p.21, Numerical Computing with MATLAB.
11. Ex.5.8 p.22, Numerical Computing with MATLAB.

