AMSC/CMSC 460 Dr. Wolfe ASSIGNMENT \#4 Due July 9, 2004

1. Write a MATLAB program to evaluate $I=\int_{a}^{b} f(x) d x$ using the trapezoidal rule with n subdivisions, calling the result I_{n}. Use the program to calculate the following integrals with $n=2,4,8,16, \ldots, 512$.

$$
\text { (a) } \int_{0}^{1} \sqrt{9+x^{2}} d x \quad \text { (b) } \quad \int_{0}^{1} x^{1 / 4} d x
$$

The exact value of the integral in (a) is 3.05466450615185 .
Analyze emperically the rate of convergence of I_{n} to I by calculating the ratios

$$
R_{n}=\frac{I_{2 n}-I_{n}}{I_{4 n}-I_{2 n}} \text { and } p_{n}=\frac{\log \left(R_{n}\right)}{\log (2)}
$$

In part (b) compute the extrapolated approximation to I,

$$
I \tilde{\cong} I_{4 n}-\frac{\left(I_{4 n}-I_{2 n}\right)^{2}}{\left(I_{4 n}-I_{2 n}\right)-\left(I_{2 n}-I_{n}\right)}
$$

for $n=128$.
2. Repeat problem 1 using Simpson's rule.
3. Apply the corrected trapezoidal rule to the integral in problem 1(a). Compare the results with those of problem 2 for Simpson's rule.
4. Use Gauss-Legendre integration with $n=2,4,8$ nodes to the integrals of problem 1. Compare the results with those for the trapezoidal and Simpson methods.
5. Find approximate values of the integrals in problem 1 by computing the Romberg integral $I_{32}^{(5)}$ where $I_{n}^{(0)}$ is the n-panel trapezoid approximation and

$$
I_{n}^{(k)}=\frac{4^{k} I_{n}^{(k-1)}-I_{n / 2}^{(k-1)}}{4^{k}-1}
$$

for n divisible by 2^{k}.
6. Use the MATLAB function QUADL to find approximate values of the integrals 1 (a) and $1(\mathrm{~b})$.
7. Ex. 6.13 p. 16 Numerical Computing with MATLAB.
8. The 11 point Newton-Cotes integration rule on $[0,1]$ is

$$
\int_{0}^{1} f(x) d x \approx \sum_{i=0}^{10} w_{i} f\left(\frac{i}{10}\right)
$$

with the w_{i} determined by requiring that the rule be exact for $f(x)=1, x, x^{2}, \ldots x^{10}$.
(a) Use MATLAB to find the weights w_{i}.
(b) Apply the rule to the integrals in 1(a) and 1(b). Note the errors.
9. We wish to estimate the value of

$$
I=\int_{0}^{\infty} x^{1 / 2} e^{-x} d x=\frac{1}{2} \sqrt{\pi}
$$

(a) Truncate the integral and use QUAD on the finite part.
(b) Try the transformation $x=-\ln t$ on this integral and use QUADL on the new integral. (QUADL will complain but will do it).
(c) Use the 2, 4 and 8 point Gauss-Laguerre rules to estimate the integral. compare your results with parts (a) and (b) above.
10. In a standard shell and tube heat exchanger hot vapor condenses on the tube, maintaining a constant temperature T_{s}. If the input is at temperature T_{1} and the output must be at temperature T_{2}, then the length of tube required is given by

$$
L=\frac{m}{\pi D} \int_{T_{1}}^{T_{2}} \frac{c_{\rho} d T}{h\left(T_{s}-T\right)}
$$

(All quantities must be in consistent units.) Here T is the temperature in ${ }^{\circ} \mathrm{F}$.
$T_{1}=60^{\circ} \mathrm{F}$ is the inlet temperature.
$T_{2}=500^{\circ} \mathrm{F}$ is the desired outlet temperature.
$T_{s}=550^{\circ} \mathrm{F}$ is the condensate temperature.
m is the fluid flow rate $=22.5 \mathrm{lb} / \mathrm{hr}$.
D is the diameter of the tube $=0.495 \mathrm{in}$.
c_{ρ} is the specific heat of the fluid $=0.251+3.46 \times 10^{-5} T-\frac{14,400}{(T+460)^{2}} \mathrm{BTU} /\left(\mathrm{lb}^{\circ} \mathrm{F}\right)$.
h is the local heat transfer coefficient $=\frac{0.023 k}{D}\left(\frac{4 m}{\pi D \mu}\right)^{0.8}\left(\frac{\mu c_{\rho}}{k}\right)^{0.4}$.
μ is the viscosity of the fluid $=0.0332\left(\frac{T+460}{460}\right)^{0.935} \mathrm{lb} /(\mathrm{ft} \mathrm{hr})$.
k is the thermal conductivity of the fluid and has the units $\mathrm{BTU} /\left(\mathrm{hr} \mathrm{ft}^{\circ} \mathrm{F}\right) . k$ varies with temperature so that

T	0	200	300	400	500
k	.0076	.0130	.0157	.0183	.0209

Use spline interpolation to define k for other values of T and calculate the required length of the heat exchanger.
You will need to use the MATLAB functions SPLINE and QUADL.The answer is about 5.9 feet.

