1.

(a) Implement the bisection method in MATLAB to find the smallest positive root of

$$
\begin{equation*}
e^{-x}=\cos x \tag{1}
\end{equation*}
$$

(b) Solve (1) using the secant method. (Use either a calculator or MATLAB.)
2. Write a MATLAB function Newton $(f, d f, x, t o l)$ to implement Newton's method. You need to supply functions $f(x)$ and $d f(x)\left(f^{\prime}(x)\right)$. The input x is the initial guess and tol is the desired accuracy which should be attained when $\left|x_{i+1}-x_{i}\right|<t o l$. You should limit the number of iterations and report a failure to converge. Use the error function.
(a) Try your function to solve equation (1). Print out the iterates and the function values.
(b) Use your function to find the first ten positive solutions of

$$
x=\tan x .
$$

(Zero is not a positive number.) Note: The careful selection of x is critical.
(c) Try the function on the double root $x=2$ of

$$
x^{3}-x^{2}-8 x+12=0
$$

Use $x=3$ and tol $=10^{-6}$. What is the rate of convergence ?
3. Let

$$
g(x)=1+0.3 \sin (x)
$$

(a) Show that the equation $g(x)=x$ has exactly one solution, α.
(b) Find an interval $[a, b]$ such that $g([a, b]) \subset[a, b]$ and $\left|g^{\prime}(x)\right| \leq \lambda<1$ for all $x \in[a, b]$ so that the contraction mapping theorm applies.
(c) Find α using fixed point iterations.
4. Apply the Aitken extrapolation scheme;

$$
y=g(x), z=g(y), x=z-\frac{(y-z)^{2}}{((z-y)-(y-x))}
$$

to find the fixed point of $g(x)=2 e^{-x}$ starting with $x_{0}=0.8$. How does the speed of convergence compare with that of fixed point iterations?
5. Which of the following iterations will converge to the indicated fixed point α (provided x_{0} is sufficiently close to α)? If it does converge, give the order of convergence; for linear convergence, give the rate of linear convergence.

$$
\begin{equation*}
x_{n+1}=-16+6 x_{n}+\frac{12}{x_{n}} \quad \alpha=2 \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
x_{n+1}=\frac{2}{3} x_{n}+\frac{1}{x_{n}^{2}} \quad \alpha=3^{1 / 3} \tag{b}
\end{equation*}
$$

(c)

$$
x_{n+1}=\frac{12}{1+x_{n}} \quad \alpha=3
$$

6. Ex 4.16, p. 23 Numerical Computing with MATLAB.
7. The study of neutron transport in a rod leads to a transcendental equation that has roots related to the critical length. For a rod of length l the equation is

$$
\cot (l x)=\frac{x^{2}-1}{2 x}
$$

Graph the two fuctions $\cot (l x)$ and $\left(x^{2}-1\right) / 2 x$ to get an idea of where they intersect to yield roots. For $l=1$, determine the three smallest positive roots. (Use fzero or fzerotx.)
8. To solve the nonlinear two-point boundary value problem

$$
y^{\prime \prime}=e^{y}-1, y(0)=0, y(1)=3
$$

using standard initial value codes it is necessary to find the missing initial condition $y^{\prime}(0)$. Observing that $y^{\prime \prime}=\exp (y)-1$ can be written in the form

$$
\frac{d}{d x}\left[\frac{\left(y^{\prime}\right)^{2}}{2}-e^{y}+y\right]=0
$$

we can integrate to obtain

$$
\frac{\left(y^{\prime}\right)^{2}}{2}-e^{y}=y=c, \text { a constant }
$$

Since $y(0)=0$, this says $y^{\prime}(0)=\sqrt{2 c+2}$. Solving for $y^{\prime}(x)$ (by separation of variables) yields

$$
\sqrt{2} x=\int_{0}^{y} \frac{d y}{\sqrt{c+e^{y}-y}}
$$

which, when evaluated at $x=1$, becomes

$$
\sqrt{2}=\int_{0}^{3} \frac{d y}{\sqrt{c+e^{y}-y}}
$$

Use fzero and quad to find c and then $y^{\prime}(0)$
9. Solve the system

$$
x^{2}+x y^{3}=9 \quad 3 x^{2} y-y^{3}=4
$$

using Newton's method for nonlinear systems. Use each of the initial guesses $\left(x_{0}, y_{0}\right)=$ $(1.2,2.5),(-2,2.5),(-1.2,-2.5),(2,-2.5)$. Observe which root to which the method converges and the number of iterates required. Write a MATLAB function with the initial guess as input. Be sure to take advantage of the fact that MATLAB works with vectors.
10. Consider the system $A \mathbf{x}=\mathbf{b}$ where

$$
A=\left(\begin{array}{rrrr}
4 & -1 & 0 & -1 \\
-1 & 4 & -1 & 0 \\
0 & -1 & 4 & -1 \\
-1 & 0 & -1 & 4
\end{array}\right)
$$

and $\mathbf{b}=(-2,4,6,12)^{\prime}$. Solve the system using
(a) The Cholesky factorization of A (MATLAB: CHOL)
(b) Jacobi iteration.
(c) Gauss-Seidel iteration. (The MATLAB command TRIL might be useful.)

