1. Write a function m-file myrk.m along the lines of the m-file myeuler.m which I have posted. It should implement the classical fourth order Runge-Kutta method with y and f vectors. Try your code with various step sizes on the example

$$
y^{\prime \prime}+y^{\prime}-6 y=20 e^{t}, \quad y(0)=0, \quad y^{\prime}(0)=1, \quad 0 \leq t \leq 2
$$

whose exact solution is $y(t)=-5 e^{t}+.8 e^{-3 t}+4.2 e^{2 t}$.
2. We again consider the nonlinear two-point boundary value problem

$$
y^{\prime \prime}=e^{y}-1, \quad y(0)=0, \quad y(1)=3
$$

We are going to find the missing initial value $y^{\prime}(0)$ by using the shooting method. We denote the solution of

$$
y^{\prime \prime}=e^{y}-1, \quad y(0)=0, \quad y^{\prime}(0)=s
$$

by $y(t ; s)$. The problem is to find s so that $y(1 ; s)=3$. For each value of s, we can use ode45 to find $y(1, s)$. We then use fzero to find the root of $G(s)=y(1 ; s)-3=0$. (You should compare your answer with the answer to Assignment\#5, problem 8.) Once you have found $y^{\prime}(0)$, use ode45 to plot the solution.
3. Ex. 7.4 p. 35 Numerical Computing with MATLAB.
4. Ex. 7.12 p. 38 Numerical Computing with MATLAB.
5. Ex. 7.14 p. 39 Numerical Computing with MATLAB.

