AMSC/CMSC 460 SUMMER 2004

SAMPLE MIDTERM EXAM

1. Let N be a positive integer. Consider the following MATLAB script:

$$
\begin{aligned}
& y=0 \\
& \text { for } i=1: N \\
& y=y+(1 / N) \\
& \text { end }
\end{aligned}
$$

$$
y
$$

(a) What would the result of the computation be in exact arithmetic ?
(b) When the script was actually run with $N=100,000\left(=10^{5}\right)$ the result was $y=.99999999999808$. When it was run with $N=131,072\left(=2^{17}\right)$ the result was $y=1$. Explain these results.
2. Let

$$
A=\left(\begin{array}{cc}
4 & 6 \\
6 & 13
\end{array}\right)
$$

A is symmetric, positive definite.
(a) Find a lower triangular matrix L with positive diagonal entries such that $A=L L^{T}$ (Cholesky factorization).
(b) Let $\mathbf{b}=(-2,1)^{T}$. Use the factorization of part (a) to solve $A \mathbf{x}=\mathbf{b}$ by forward elimination and back substitution.
3. Let $f(x)=x^{3}$.
(a) Find the quadratic polynomial $p_{2}(x)$ interpolating $f(x)$ at $x_{0}=0, x_{1}=1, x_{2}=2$.
(b) Find $P(x)$, the piecewise linear interpolent to $f(x)$ with breakpoints x_{0}, x_{1}, x_{2}.
(c) Find the linear function $L(x)$ which best fits the data $(0,0),(1,1),(2,8)$ in the sense of least squares. Plot $f(x)$ and $L(x)$ on the same graph.
(d) Which of the functions found in parts (a),(b), and (c) do you think does the best job of approximating $f(x)$ on [0,2] ? Explain.
4. Let

$$
S(x)=\left\{\begin{array}{cc}
x+1 & -2 \leq x \leq-1 \\
x^{3}-2 x-1 & -1 \leq x \leq 1 \\
x-3 & 1 \leq x \leq 2
\end{array}\right.
$$

Is $S(x)$ a natural cubic spline ? Explain.
5.
(a) Find a polynomial $p(x)$ of degree ≤ 2 satisfying $p(0)=0, p(1)=1, p^{\prime}(1 / 4)=2$.
(b) There is a number $c, 0<c<1$, such that there is no polynomial $p(x)$ of degree ≤ 2 satisfying $p(0)=0, p(1)=1, p^{\prime}(c)=2$. Find c.
6. Let

$$
I=\int_{0}^{1} \frac{2}{1+x} d x=\ln 4=1.38629436
$$

Compute approximations to I using
(a) The 4 panel trapezoid rule.
(b) The 4 panel Simpson's rule.
(c) The 4 panel corrected trapezoid rule.

Which method gives the best result ?
7. Mark each of the following statements as true (T) or false (F).
(a) A problem is ill-conditioned if its solution is highly sensitive to small changes in the problem data.
(b) If x is any vector in \mathbf{R}^{n} then $\|x\|_{1} \geq\|x\|_{\infty}$.
(c) Any nonsingular matrix A can be factored as $A=L U$ with L lower triangular and U upper triangular.
(d) When interpolating a continuous function by polynomials at equally spaced points on a given interval, the polynomial interpolants always converge to the function as the number of interpolation points increases.
(e) Given $n+1$ data points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ with $x_{0}<x_{1}<\cdots<x_{n}$ there is a unique cubic spline interpolating these points.

