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Abstract. Smooth Kähler–Einstein metrics have been studied for the past
80 years. More recently, singular Kähler–Einstein metrics have emerged as
objects of intrinsic interest, both in differential and algebraic geometry, as well
as a powerful tool in better understanding their smooth counterparts. This
article is mostly a survey of some of these developments.
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1. Introduction

The Kähler–Einstein (KE) equation is among the oldest fully nonlinear equa-
tions in modern geometry. A wide array of tools have been developed or applied
towards its understanding, ranging from Riemannian geometry, PDE, pluripotential
theory, several complex variables, microlocal analysis, algebraic geometry, proba-
bility, convex analysis, and more. The interested reader is referred to the numerous
existing surveys on related topics [10,28,33,34,40,41,62,99,115–120,125,199,
200,227,235,237,246–248].

In this article, which is largely a survey, we do not attempt a comprehen-
sive overview, but instead focus on a rather subjective bird’s eye view of the sub-
ject. Mainly, we aim to survey some recent developments on the study of singular
Kähler–Einstein metrics, more specifically, of Kähler–Einstein edge (KEE) metrics,
and while doing so to provide a unified introduction also to smooth Kähler–Einstein
metrics. In particular, the new tools that are needed to construct KEE metrics give
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a new perspective on construction of smooth KE metrics, and so it seemed worth-
while to use this opportunity to survey the existence and non-existence theory of
both smooth and singular KE metrics. We also put an emphasis on understanding
concrete new geometries that can be constructed using the general theorems, con-
centrating on the complex 2-dimensional picture, and touch on some relations to
algebraic geometry and non-compact Calabi–Yau spaces.

As noted above, most of the material in this article is a survey of existing results
and techniques, although, of course, sometimes the presentation may be different
than in the original sources. For the reader’s convenience, let us also point out the
sections that contain results that were not published elsewhere. First, some of the
treatment of energy functionals in §5.3 and §5.6 extends some previous results of
the author from the smooth setting to the edge setting, although the generalization
is quite straightforward and is presented here for the sake of unity. The section
on Bott–Chern forms §5.4 is essentially taken from the author’s thesis, again with
minor modifications to the singular setting. Second, some of the treatment of the a
priori estimates in §7 is new. In particular, the reverse Chern–Lu inequality intro-
duced in §7.5 is new, as is the proof in §7.6 that the classical Aubin–Yau Laplacian
estimate follows from it. Finally, we note the minor observation made in §7.7 that
some of the classical Laplacian estimates can be phrased also for Kähler metrics
that need not satisfy a complex Monge–Ampère equation. Third, Proposition 8.14
is a very slight extension of the original result of Di Cerbo.

Many worthy vistas are not surveyed here, including: toric geometry; quan-
tization; log canonical thresholds, Tian’s α-invariant, and Nadel multiplier ideal
sheaves [62,189,238]; noncompact Kähler–Einstein metrics; Berman’s probabilis-
tic approach to the KE problem [19]; Kähler–Einstein metrics on singular varieties,
as, e.g., in [24,108]; recent work on algebraic obstruction to deforming singular KE
metrics to smooth ones [63,249]; the GIT related aspects of the Kähler–Einstein
problem, that we do not discuss in any detail in this article, instead referring to
the survey of Thomas [237] and the articles of Paul [194,195].

Organization. Historically, the Kähler–Einstein equation was first phrased
locally as a complex Monge–Ampère equation. This, and the corresponding global
formulation, are discussed in Section 2. Section 3 is a condensed introduction
to Kähler edge geometry, describing aspects of the theory that are absent from
the study of smooth Kähler manifolds: new function spaces, a different notion of
smoothness (polyhomogeneity), a theory of (partial) elliptic regularity, and new
features of the reference geometry (e.g., unbounded curvature). We use these tools
to describe the structure of the Green kernel of Kähler edge metrics, and the proof
of higher regularity of KEE metrics [141]. Section 4 summarizes the main existence
and non-existence results on KE(E) metrics. First, it describes the classical obstruc-
tions due to Futaki and Mastushima coming from the Lie algebra of holomorphic
vector fields (and their edge counterparts), and their more recent generalization to
various notions of “degenerations”, that capture more of the complexity of Mabuchi
K-energy, the functional underlying the KE problem. Second, it states the main
existence and regularity theorems for KE(E) metrics. The strongest form of these
results appears in [141,175], generalizing the classical results of Aubin, Tian, and
Yau from the smooth setting, and those of Troyanov from the conical Riemann
surface setting, to the edge setting. We also describe other approaches to this
problem. The main objective of §6–§7 is to describe the analytic tools needed to
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carry out the proof of these theorems, in a unified manner, both in the smooth and
the edge settings, and regardless of the sign of the curvature. We describe this in
more detail below; before that, however, Section 5 reviews the variational theory
underlying the Monge–Ampère equation in this setting. In particular, it reviews
the basic properties of the Mabuchi K-energy and the functionals introduced by
Aubin, Mabuchi, and others. The alternative definition of these via Bott–Chern
forms is described in detail. A relation to the Legendre transform due to Berman
is also described. Finally, we describe the properness and coercivity properties of
these functionals. The former is needed for the actual statement of the existence
theorem in the positive case from §4.

Section 6 describes a new approach, the Ricci continuity method, developed by
Mazzeo and the author in [141] to prove existence of KE(E) metrics in a unified
manner, and with only one-sided curvature bounds. This approach works in a
unified manner for all cases (negative, zero, and positive Einstein constant) and for
both smooth and singular metrics. Section 7 describes the a priori estimates needed
to carry out the Ricci continuity method. In doing so, this section also provides a
unified reference for a priori estimates for a wide class of singular Monge–Ampère
equations. Section 8 describes work of Cheltsov and the author [60] on classification
problems in algebraic geometry related to the KEE problem. Here, the notion of
asymptotically log Fano varieties is introduced. This is a class of varieties much
larger than Fano varieties, but where we believe there is still hope of classification
and a complete picture of existence and non-existence of KEE metrics. Section 9
then builds on these classification results to phrase a logarithmic version of Calabi’s
conjecture. We then briefly describe a program to relate this conjecture concerning
KEE metrics to Calabi–Yau fibrations and global log canonical thresholds. Finally,
some progress towards this conjecture is described, in particular giving new KEE
metrics on some explicit pairs, and proving non-existence on others.

2. The Kähler–Einstein equation

A Kähler manifold is a complex manifold (M,J) equipped with a closed positive
2-form ω that is J-invariant, namely ω(J · , J · ) = ω( · , · ). Here M is a differen-
tiable manifold, and J is a complex structure on M , namely an endomorphism of
the tangent bundle TM satisfying J2 = −I and [T 1,0M,T 1,0M ] ⊆ T 1,0M , where
TM ⊗RC = T 1,0M ⊕T 0,1M , with T 1,0M the

√
−1-eigenspace of J , and T 0,1M the

−
√
−1-eigenspace of J . Associated to (M,J, ω) is a Riemannian metric g, defined

by g( · , · ) = ω( · , J · ), whose Levi-Civita connection we denote by ∇. Equiva-
lently, one may also define (M,J, g) to be a Kähler manifold when g is J-invariant,
J2 = −I, and ∇J = 0 (i.e., g-parallel transport preserves T 1,0M).

Schouten called this new type of geometry “unitary,” [220] and this can be
understood from the fact that not only does one obtain a reduction of the structure
group to U(n) (this merely characterizes almost-Hermitian manifolds) but also the
holonomy is reduced from O(2n) to U(n). In retrospect this name seems quite
fitting, on a somewhat similar footing to “symplectic geometry,” a name first sug-
gested by Ehresmann. However, only a few authors in the 1940’s and 1950’s were
familiar with Schouten-van Dantzig’s work. The first few accounts of Hermitian ge-
ometry, mainly by Bochner, Eckmann and Guckenheimer referred only to Kähler’s
works, and the name “Kähler geometry” became rooted (for more on this topic, see
[216, §2.1.4]).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

48 YANIR A. RUBINSTEIN

One of Schouten–van Dantzig’s and Kähler’s discoveries was that on the epony-
mous manifold the Einstein equation is implied, locally, by the complex Monge–
Ampère equation

(2.1) det[uij̄ ] := det

[
∂2u

∂zi∂z̄j

]
= e−μu, on U,

where μ ∈ R is the Einstein constant [144, 220]. Here u is a plurisubharmonic
function defined on some coordinate chart U ⊂ M , with holomorphic coordi-
nates z1, . . . , zn : U → Cn; Indeed, if we let gH|U =

√
−1uij̄dz

i ⊗ dzj denote the
Hermitian metric associated to u (with summation over repeated indices), then
the Riemannian metric g = 2Re gH is Einstein if (2.1) holds because Ric g =

2Im((log det[uij̄ ])kl̄dz
k ⊗ dzl). Thus, in the “unitary gauge”, the Einstein system

of equations reduces to a single, albeit fully nonlinear, equation.
For some time though, it was not clear how to patch up these equations globally.

The crucial observation is that both sides of (2.1) are the local expressions of
global Hermitian metrics on two different line bundles: the anticanonical line bundle
ΛnT 1,0M on the left hand side, and the line bundle associated to μ[ω] on the right.
In particular this implies that these line bundles must be isomorphic, and

(2.2) 2πc1(M,J)− μ[ω] = 0.

This of course puts a serious cohomological restriction on the problem. But assum-
ing this, the local Monge–Ampère equation can be converted to a global one. Let
dz := dz1 ∧ · · · ∧ dzn. The expressions

√
−1n

2

det[uij̄ ]dz ∧ dz = e−μu
√
−1n

2

dz ∧ dz

represent globally defined volume forms on M , appropriately interpreted. We
choose a representative Kähler form ω of [ω]. By definition,

√
−1∂∂̄u is the curva-

ture of e−u, hence it lies in [ω]. On each U ,
√
−1∂∂̄u = ω+

√
−1∂∂̄ϕ for a globally

defined ϕ ∈ C∞(M): this follows from the Hodge identities [124, p. 111] by setting
ϕ = trωGω(

√
−1∂∂̄u− ω), where Gω denotes the Green operator associated to the

Laplacian (on the exterior algebra).
Thus,

(ω +
√
−1∂∂̄ϕ)n = ωne− log det[vij̄ ]−μv−μϕ

where locally ω =
√
−1vij̄dzi ∧ dzj . But by (2.2) e− log det[vij̄ ]−μv is the quotient

of two Hermitian metrics on the same bundle, hence a globally defined positive
function that we denote by efω . We thus obtain the Kähler–Einstein equation,

(2.3) ωn
ϕ = ωnefω−μϕ, on M

for a global smooth function ϕ (called the Kähler potential of ωϕ relative to ω).
The function fω, in turn, is given in terms of the reference geometry and is thus
known. It is called the Ricci potential of ω, and satisfies

√
−1∂∂̄fω = Ric ω − μω,

where it is convenient to require the normalization
∫
efωωn =

∫
ωn. Equivalently,

(2.3) says that fωϕ
= 0. Thus, in the language of the introduction to §4, the KE

problem has a solution precisely when the vector field f : φ �→ fωφ
on the space of

all Kähler potentials has a zero.
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3. Kähler edge geometry

This section introduces the basics of Kähler edge geometry. First, we describe
some general motivation for introducing these more general geometries in §3.1. The
one-dimensional geometry of a cone is the topic of §3.2. It is fundamental, since a
Kähler edge manifold looks like a cone transverse to its ‘boundary’ divisor. Subsec-
tion 3.3 phrases the KEE problem as a singular complex Monge–Ampère equation,
generalizing the discussion in §2. What is the appropriate smooth structure on a
Kähler edge space? This is discussed in §3.4 where the notion of polyhomogene-
ity is introduced. The edge and wedge scales of Hölder function space are defined
in §3.5. Next, the various Hölder domains relevant to the study of the complex
Monge–Ampère equation are introducted in §3.6.

3.1. A generalization of Kähler geometry. The cohomological obstruc-
tion (2.2) is necessary for the local KE geometries to patch up to a global one.
However, the condition (2.2) is very restrictive. Is there a way of constructing a
KE metric at least on a large subset of a general Kähler manifold? Of course,
such a question makes sense and is very interesting also in the Riemannian context.
The interpretation of the local KE equation in terms of Hermitian metrics on line
bundles, though, distinguishes between these two settings.

Thus, suppose that c1(M,J) − μ[ω] is not zero (nor torsion) but that this
difference, or ‘excess curvature’ can be decomposed as follows: there exist divisors
D1, . . . , DN and numbers βi > 0 such that

c1(M,J)− μ

2π
[ω] =

N∑
i=1

(1− βi)c1(LDi
),

with LF denoting the line bundle associated to a divisor F . At least when M is
projective, by the Lefschetz theorem on (1,1)-classes [124, p. 163] this can always
be done when the left hand side belongs to H2(M,Z) ↪→ H2(M,R), and therefore
also when it is merely a rational class, or a real class. Of course this means that
we might need to take a non-reduced divisor on the right hand side, and limits the
usefulness of such a generalization to the case when the divisor D =

∑
Di is not

too singular, and the βi are not too large.
Thus, necessarily any KE potential u must satisfy locally,

(3.1) det[uij̄ ] = e−μu
N∏
i=1

|ei|2βi−2, on U,

where ei denotes a local holomorphic section of Di. This equation is then quite
similar to the local KE equation (2.1) on neighborhoods U contained in the com-
plement of the Di. However, if U intersects any of the Di nontrivially, the equation
becomes singular or degenerate.

To understand this equation better, it is helpful to consider the model case
with N = 1, M = Cn and D = {e1 = z1 = 0} = {0} × Cn−1. Then, u =
1
2 (

1
β2 |z1|2β + |z2|2 + . . . + |zn|2) is a solution of (3.1) with μ = 0. Note that u

corresponds to a singular, but continuous, Hermitian metric e−u. We call the
associated curvature form the model edge form on (Cn,Cn−1),

(3.2) ωβ = −
√
−1∂∂̄ log e−u =

1

2

√
−1

(
|z1|2β−2dz1 ∧ dz1 +

n∑
j=2

dzj ∧ dzj
)
,
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and also denote by

(3.3) gβ = |z1|2β−2|dz1|2 +
n∑

j=2

|dzj |2,

the model edge metric on (Cn,Cn−1). More generally, if D = D1 + . . .+DN is the
union of N coordinate hyperplanes in Cn which intersect simply and normally at
the origin, we set β = (β1, . . . , βN ) and denote the model edge form on (Cn, D) by

ωβ =
1

2

√
−1

( N∑
i=1

λi|zε(i)|2βi−2dzε(i) ∧ dzε(i) +
∑

j∈{1,...,n}\{ε(i)}N
i=1

dzj ∧ dzj
)
,

where λi = 1 if 0 ∈ Di and λi = 0 otherwise, and where ε(i) = 0 if λi = 0, and
otherwise ε(i) ∈ {1, . . . , n} is such that {zε(i) = 0} = Di.

This model case motivates the following generalization of a Kähler manifold.
Some visual references are given in Figure 5 in §4.4 below.

Definition 3.1. A Kähler edge manifold is a quadruple

(M,D, β = (β1, . . . , βN ), ω),

with M a smooth Kähler manifold, D = D1+ . . .DN ⊂M a simple normal crossing
(snc) divisor, βi : Di → R+ a function for each i = 1, . . . , N , and, finally, ω a
Kähler current on M that is smooth on M \ D and asymptotically equivalent to
ωβ(p) near each point p of D.

For the notion of a Kähler current (also called a positive (1, 1) current) we
refer to [124, Chapter 3]. One could make the definition more general, e.g., by
allowing D to be more singular, but we do not explore that here. Furthermore, in
our discussion below, we will always assume that βi is constant on each component
Di. (This assumption is present in essentially all works on the subject so far.)
Lastly, for the moment, we are deliberately vague on the meaning of “asymptotically
equivalent.” Several working definitions are given in §3.7 (see in particular Lemma
3.11).

The study of Kähler edge metrics was initiated by Tian [243], motivated in
part by the possibility of endowing more Kähler manifolds with a generalized KE
metric, when the obstruction (2.2) does not vanish. Of course, the possibility
of uniformizing more Kähler manifolds is exciting in itself, and there are many
possible applications of such metrics in algebraic geometry (see, e.g., [243,261]).
However, as we will see later, this generalization sheds considerable light also on
the theory of smooth KE metrics. Finally, Kähler edge manifolds are also a natural
generalization of conical Riemann surfaces, who were first systematically studied
by Troyanov [260]; see §4.4 for more on this topic.

3.2. The geometry of a cone. In the previous subsection we arrived at
a generalization of Kähler geometry by seeking a generalization of the Kähler–
Einstein equation. Before going back to the latter, let us first say a few words on
the geometry described by (3.2).

The basic observation is that

(3.4) Cβ := (C, |z|2β−2
√
−1dz ∧ dz)

is a cone with tip at the origin. For instance, when β = 1/k with k ∈ N, we obtain an
orbifold. We emphasize that here we equip the smooth manifold C with a singular
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z = ρe
√

−1θ

−→

2πβ

ζ = re
√

−1βθ

Figure 1. The map z �→ zβ =: ζ maps the disc to a wedge of angle
2πβ (the inverse map identifies the two ‘sides’ of the wedge). This
map pulls-back the flat metric |dζ|2 on the wedge to the singular
metric β2|z|2β−2|dz|2 on the disc.

metric, and we are claiming that thus equipped it is isometric to a singular metric
space, a cone. Perhaps the simplest way to see this is to recall the construction of
a cone out of a wedge. Starting with a wedge of angle 2πβ, one identifies the two
sides of the boundary. This can of course be done in many ways, in other words
there are many maps of the form (r, θ) �→ (f(r, θ), θ/β) (so the angle in the target
indeed varies between 0 and 2π, or in other words, the target indeed ‘closes up’ and
is homeomorphic to R+×S1(2π)). However, there is an essentially unique such map
that preserves angles, or in other words is holomorphic. By the Cauchy–Riemann
equations (i.e.,

r∂r(ReF, ImF ) = ∂θ(ImF,−ReF )

for a holomorphic function F ) it must be of the form f(r, θ) = Cr1/β, for some
constant C. The inverse of this map when C = 1, from the cone to the wedge,

is given by (ρ, φ) �→ (ρβ, βφ), or simply z = ρe
√
−1φ �→ zβ =: ζ (see Figure 1).

Declaring this map to be an isometry determines the geometry of the cone; pulling
back the Euclidean metric |dζ|2 =

√
−1∂∂̄|ζ|2 endows the cone with the metric√

−1∂∂̄|z|2β = β2|z|2β−2
√
−1dz ∧ dz.

3.3. The Kähler–Einstein edge equation. We now return to our discus-
sion of the generalized local Kähler–Einstein equation (3.1).

To turn (3.1) into a global equation we seek (at least formally in the case we are
not dealing with Q-line bundles), an equality of two continuous Hermitian metrics:
one on μΩ and the other on −KM +

∑
i(1−βi)LDi

. In analogy with the discussion
of §2, we now choose a reference metric that is locally asymptotic to the model
edge geometry, instead of the Euclidean geometry on Cn that was implicitly the
model there. Suppose that hi is a smooth Hermitian metric on LDi

, and that si is
a global holomorphic section of LDi

, so that Di = s−1
i (0). We let

(3.5) ω := ω0 +
√
−1∂∂̄φ0,

with

(3.6) φ0 := c
∑

(|si|2hi
)βi .

An easy computation shows that ω is locally equivalent to ωβ and that for small
enough c > 0 it defines a Kähler metric away from D [141, Lemma 2.2]. Moreover,
in the coordinates above, near a smooth point of D1, for example, |z1|2β1−2 detψij̄
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is continuous, as desired. Similar properties hold near crossing points of D. Thus,
we may proceed exactly as in §2 to obtain an (seemingly!) identical equation,

(3.7) ωn
ϕ = ωnefω−μϕ, on M \D,

only now away fromD, and with respect to the reference form ω, where ϕ is required
to lie in the space of Kähler edge potentials

(3.8) Hω := {ϕ ∈ C∞(M \D) ∩ C0(M) : ωϕ := ω +
√
−1∂∂̄ϕ > 0 on M

and ωϕ is asymptotically equivalent to ωβ}.

Equation (3.7) is the Kähler–Einstein edge (KEE) equation.
By construction, the twisted Ricci potential of ω, fω, satisfies

(3.9)
√
−1∂∂̄fω = Ric ω − 2π(1− β)[D]− μω,

where it is again convenient to require the normalization
∫
efωωn =

∫
ωn. Differ-

entiating (3.7) leads to the following equivalent formulation of the KEE equation.

Definition 3.2. With all notation as above, a Kähler current ωKE is called
a Kähler–Einstein edge current with angle 2πβ along D and Ricci curvature μ if
ωKE ∈ Hω (see ( 3.8)), and if

(3.10) RicωKE − 2π(1− β)[D] = μωKE,

where [D] is the current associated to integration along D, and where Ricω denotes
the Ricci current (on M) associated to ω, namely, in local coordinates Ricω =

−
√
−1∂∂̄ log det[gij̄ ] if ω =

√
−1gij̄dzi ∧ dzj.

The KEE equation may also be rewritten in terms of the background smooth
geometry. We carry this out for pedagogical purposes, since it allows to unravel
the difference between equations (3.7) and (2.3), that are formally the same but
involve different geometric objects.

Let e be a local holomorphic frame for LD valid in a neighborhood intersecting
D, such that s = z1e on that neighborhood, and denote by

ai := |ei|2hi

a smooth positive function on that neighborhood. Define Fω0
(up to a constant,

for the moment) by
√
−1∂∂̄Fω0

= Ricω0 − μω0 +
∑

i(1− βi)
√
−1∂∂̄ log ai. Setting

ϕ̃ := φ0 + ϕ, it easy to see that

(3.11) (ω0 +
√
−1∂∂̄ϕ̃)n =

∏
i

|si|2βi−2
hi

ωn
0 e

Fω0
−μϕ̃,

where we think of this equation as determining a normalization of Fω0
such that

both sides have equal integrals (cf. [141, (53)]).
For much of the rest of this article we will be concerned with solving this

equation with optimal estimates on the solution. In this regard, we note that
global solutions, smooth away from D, of this (when μ ≤ 0) and quite more general
Monge–Ampère equations were constructed already in much earlier work of Yau
[268, §7–9]. Our goal though, is to explain how to go beyond such weak solutions
and obtain estimates that show the metric in fact has edge singularities near the
‘boundary’ D. To start, we define the appropriate function spaces to prove such
estimates.
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Remark 3.3. A point we glossed over in the discussion is the fact that a
necessary condition for the existence of a KEE metric is that the first Chern class
of the adjoint bundle,

(3.12) −KM +
∑
i

(1− βi)LDi
, is μ

2π times an ample class.

This is obvious in the smooth case (βi = 1) from the KE equation. In general,
the KEE equation only guarantees that this class is represented by ( μ

2π times) a
Kähler current. But the edge singularities are sufficiently mild that the divisor D
has zero volume [141, §6], and the Lelong numbers of this current along D are zero.
As observed by Di Cerbo [87] this implies that the class is actually ( μ

2π times) an
ample class, i.e., represented by a smooth Kähler metric.

3.4. Three smooth structures, one polyhomogeneous structure. Nat-
urally, if one’s goal is to obtain existence and regularity of certain geometric objects
(such as KEE metrics) on a Kähler edge manifold, then understanding the differ-
entiable structure underlying such a space should play a key rôle.

First, let us consider the simplest compact closed example, that ofM = P1 with
a single cone point D = p. Then M of course has its natural conformal structure,
and there is a corresponding smooth structure. The former is represented locally
near p by the holomorphic coordinate z, and the latter can be represented by the
associated polar coordinates (ρ, θ), where of course all the points (0, θ) are identified
with p.

Recall from §3.2 that an alternative conformal structure is represented locally
by the coordinate ζ := zβ . Of course, ζ is multi-valued, and one must choose a
branch of the Riemann surface associated to z �→ zβ . Whenever we work with ζ,
we assume such a choice was made. More specifically we slit the disc, and work
with the associated polar coordinates denoted by (r, θ), where now θ ∈ [0, 2πβ),
and these represent the associated smooth structure. That is, smooth functions are
smooth functions of r, θ. Clearly, this smooth structure is incompatible with the
one of the previous paragraph.

Which smooth structure should we work with? The point of view stressed in
[141], following Melrose’s general framework [181], is that it is rather the polyho-
mogeneous structure that is central to the problem, and not either of these smooth
structures. The purpose of this section is to explain what is meant by this. To carry
this out, it will be preferable to work with a bona fide singular space associated to
M (recall M itself is smooth). That is, we consider the singular metric space Msing

obtained as the metric completion from the underlying distance function associated
to M equipped with its Kähler edge metric. It is readily seen that this space is
homeomorphic to M (since the divisor is at finite distance from any point by (3.3)).
What is important to the development of the theory described below is that the
smooth locus of this singular space Msing is precisely the complement of a simple
normal crossing divisor in a nonsingular space. Thus, as we describe below, it will
admit an edge structure.

The first step we take is actually to desingularize Msing, i.e., resolve its sin-
gularities to obtain a manifold with boundary. The edge structure we will define
shortly, will, by definition, be on this desingularized space. The desingularization
is done, as usual, by a series of resolutions by real blow-ups; when D is smooth
and connected a single such blow-up suffices. In the simplest example of (P1, p)
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−→

Figure 2. The real blow-up of the tear-drop space

considered just above this amounts to a single real blow-up at p, resulting in the
manifold with boundary X consisting of the disjoint union of P1 \ {p} and S1 (see
Figure 2). In other words, the smallest manifold with boundary on which the polar
coordinates are well-defined, without identifying the points {(0, θ) : θ ∈ [0, 2π)}.
In general, the manifold X is the real blow-up of Msing at D, i.e., the disjoint union
M \D and the circle normal bundle of D in M , endowed with the unique smallest
topological and differential structure so that the lifts of smooth functions on M and
polar coordinates around D are smooth.

The advantage of working with functions on X rather than on M or Msing

is convenience. For instance, it is much easier to keep track of singularities of
distributions (such as the Green kernel) on the desingularization—this is explained
in detail in §3.9. When D has crossings this desingularization also serves to give a
reasonable description for distributions near crossing points [175,176].

The relevant coordinates on X are (r, θ, y) where y = (y1, . . . , y2n−2) denotes
the ‘conormal’ coordinates, i.e., coordinates onD. The relevant smooth structure to
our problem turns out to be the smooth structure ofX as a manifold with boundary.
Namely, smooth functions are smooth functions of r, θ, and y1, . . . , y2n−2.

Next, we defined the associated ‘edge structure’ of X in the sense of Mazzeo
[172, §3].

Definition 3.4. The edge structure on the compact manifold with boundary X
is the Lie algebra of vector fields Ve(X) generated by

Ve(X) = spanR

{
r
∂

∂r
,
∂

∂θ
, r

∂

∂y1
, . . . , r

∂

∂y2n−2

}
.

The Lie algebra Ve consists of vector fields on X tangent to the S1 fibers on
∂X. The space C∞

e is defined to be the space of C∞ functions on X with respect
to this edge structure, i.e., functions that are infinitely-differentiable with respect
to the vector fields in Ve(X); see §3.5 for an alternative, somewhat more geometric,
definition of this space. Note that a function on X can be pushed-forward, using the
blow-down map, to a function on M \D, and, by abuse of notation, we often make
this identification without mention. Much care is needed here, however, since a
function in C∞

e need not correspond even to a continuous function on M (consider,
e.g., the function sin(log r))!

In Kähler edge geometry there is a clear distinction between differentiation in
the direction normal to the edge and in the complementary directions. Thus, it is
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convenient to define the Lie algebra Vb(X) consisting of vector fields on X that are
tangent to ∂X, i.e.,

Vb(X) = spanR

{
r
∂

∂r
,
∂

∂θ
,

∂

∂y1
, . . . ,

∂

∂y2n−2

}
,

and introduce the following terminology.

Definition 3.5. The space of bounded conormal functions on X is

A0 = A0(X) := {f ∈ L∞(X) : for all k ∈ N and

V1, . . . , Vk ∈ Vb(X), V1 · · ·Vkf ∈ L∞(X)} .
In other words, these are bounded functions on X that are infinitely differen-

tiable with respect to vector fields in Vb(X). Thus, they are infinitely-differentiable
in directions tangent to D (the ‘conormal directions’), but still potentially rather
badly behaved with respect to the vector field ∂

∂r . Another geometric description

of A0 is given in §3.5 below.
Now, let us, finally, define the polyhomogeneous structure of X. For that we

first set
Aγ,p := rγ(log r)pA0.

Definition 3.6. The space of bounded polyhomogeneous functions on X is

A0
phg :=

{
f ∈ A0(X) : f ∼

∞∑
j=0

Nj∑
p=0

ajp(θ, y)r
σj (log r)p

}
,

with Reσj increasing to ∞, and Reσj ≥ 0 with Nj = 0 if Reσj = 0.

Similarly, one defines Aγ,p
phg := rγ(log r)pA0

phg, and the polyhomogeneous structure
of X is defined as the union

A∗
phg :=

⋃
γ,p

Aγ,p
phg.

For later use, we define the index set associated to a function u ∈ A0
phg to be the

set

(3.13) Eu := {(σj , p) : ajp �≡ 0}.
In Definition 3.6, the ∼ symbol means that f admits an asymptotic expansion
in powers of r and log r. By definition, this means that for every k ∈ N and
m ∈ {0, . . . , Nk},
(3.14)

f−
k−1∑
j=0

Nj∑
p=0

ajp(θ, y)r
σj(log r)p−

Nk−m∑
p=0

akp(θ, y)r
σk(log r)p ∈

{
Aσk,Nk+1−m

phg if m ∈ N,

Aσk+1,Nk+1

phg if m = 0,

and moreover that corresponding remainder estimates hold whenever any number
of vector fields in Vb(X) are applied to the left hand side of (3.14). These are
referred to as remainder estimates since if a function u lies in Aγ,p, it satisfies
|u| ≤ Crγ(log r)p on X.

Several remarks are in order. First, on a smooth space, Taylor’s theorem implies
that any smooth function admits a Taylor series expansion. In our setting, however,
there is a certain ‘gap’ between the space C∞

e (or evenA0) and the space of functions
admitting a bi-graded expansion as in Definition 3.6. Second, the push-forward of
a function in A0

phg (unlike a function in C∞
e ) can be considered as a continuous
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function on M , provided its leading term is independent of θ (and not just on
M \ D). Third, expansions of polyhomogeneous functions are rarely convergent,
but only give ‘order of vanishing’ type estimates, as described above. Fourth, the
remainder estimate (3.14) can be written as an equality

(3.15) f −
k−1∑
j=0

Nj∑
p=0

ajp(θ, y)r
σj (log r)p −

Nk−m∑
p=0

akp(θ, y)r
σk(log r)p = u,

with u belonging to one of the two spaces in the right hand side of (3.14), and this
equality is understood to hold on some ball (in the coordinates r, y, θ) centered at
a point on D. It is usually difficult to control the size of this ball, i.e., to give lower
bounds for its radius. However, since such a positive radius exists for each p ∈ D
and D is compact, the equality (3.15) actually holds on some tubular neighborhood
(of positive distance—as r is uniformly equivalent to the distance function close
enough to D) of D. Finally, note that the polyhomogeneous structure associated
to either the (ρ, θ, y) or the (r, θ, y) coordinates is the same, precisely because we
are allowing fractional powers of r and β log ρ = log r.

3.5. Edge and wedge function spaces. There are two distinct scales of
function spaces naturally associated to a Kähler edge metric, that we will denote
by Ck,α

s

with s equal to either w or e.

We consider both of these as subspaces of L∞(M).
The first, the wedge spaces Ck,α

w , are the usual Ck,α spaces on M \ D with
respect to a(ny) Kähler edge metric, intersected with L∞(M) (and, in fact, are
contained in C0(M)). That is, we consider M \ D as an incomplete Riemannian
manifold with the usual distance to the edge being a distance function.

The second, the edge spaces Ck,α
e [172], are the intersection of L∞(M) with the

usual Ck,α spaces on M \D with respect to a conformal deformation of a Kähler
edge metric for which the logarithm of the usual distance to the edge is now a
distance function. Thus, we consider M \ D as a complete Riemannian manifold.
Equivalently, Ck,α

e consists of functions onM\D that are push-forwards of functions
on X that are Ck,α with respect to the edge differentials Ve(X) of §3.4.

Let us now explain how to define these function spaces explicitly in the model
edge Cβ × R2n−2. In the notation of §3.2, the flat metric on a cone Cβ takes
the form dr2 + r2dθ2, with θ ∈ [0, 2πβ). Thus the flat model edge metric ωβ is
given by dr2 + r2dθ2 + dy2, with y = (y1, . . . , y2n−2) coordinates on R2n−2, and
it is this metric that defines the spaces Ck,α

w . The conformally rescaled metric
(d log r)2+dθ2+ r−2dy2 defines the spaces Ck,α

e . It follows that the defining vector
fields for the spaces Ck,α

s are rδe(s){ ∂
∂r ,

1
r

∂
∂θ ,

∂
∂yj

}, where δe(e) = 1, δe(w) = 0. We

will say a bit more about these function spaces below, but for a thorough discussion
of these function spaces as well as the different coordinate choices involved we refer
to [141, §2]. For the moment we observe the obvious inclusion Ck,γ

w ⊂ Ck,γ
e ; the

wedge spaces are in fact much smaller than their edge counterparts. E.g., as noted
earlier, sin log r ∈ C∞

e shows that C∞
e �⊂ C0(M) (though it is contained in L∞(M)),

and rk+ε ∈ Ck,ε
w ∩ C∞

e but is not contained in any higher wedge space.
Note, finally, that the space A0 defined in §3.4 admits a similar geometric

description. Namely it is the space of bounded functions that are C∞ space with
respect to the metric d(log r)2 + dθ2 + dy2, namely the product metric obtained
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by conformally rescaling the flat metric on the cone together with the standard
(non-rescaled) Euclidean metric on R2n−2.

3.6. Various Hölder domains. Perhaps surprisingly, it turns out that the
complex Monge–Ampère equation, and, as a special case, the Poisson equation,
cannot be solved in general in C2,α

w . In fact, as already noted, Re z1 is pluriharmonic

and belongs merely to C
1, 1β−1
w , which fails to lie in C2,α

w when β > 1/2. On the
other hand, C2,α

e is certainly a large enough space to find solutions; however, it
is not even contained in C0 and so seems to give too little control/regularity to
develop a reasonably strong existence theory for the Monge–Ampère equation.

First, we introduce the maximal Hölder domains

D0,γ
s (Δω) = D0,γ

s := {u ∈ C0,γ
s : Δωu ∈ C0,γ

s }.

These are Banach spaces with associated norm

||u||D0,γ
s (Δω) := ||Δωu||C0,γ

s
+ ||u||C0,γ

s
.

We also define the little Hölder domains

D̃0,γ
s (Δω),

as the closure of the space A0
phg of polyhomogeneous functions in the D0,γ

s (Δω)
norm. The name ‘maximal’ comes from the analogy with the usual definition of the
maximal domain of the Laplacian in L2, namely Dmax(Δ) := {u ∈ L2 : Δu ∈ L2}.
On the other hand, the ‘little’ spaces are defined similarly to the usual little Hölder
spaces (see, e.g., [164]). The latter are separable, unlike the former, and of course

D̃0,γ
s (Δω) ⊂ D0,γ

s (Δω).
The space D0,γ

w was introduced by Donaldson [102] (where it is denoted C2,γ,β);
it gives wedge Hölder control of the wedge Laplacian, which is a sum of certain
second wedge derivatives of type (1,1). Motivated by this, the space D0,γ

e was
introduced in [141], and gives edge Hölder control of the wedge Laplacian. Thus,
unlike D0,γ

w , it is a sort of hybrid space. In fact, D0,γ
s can be characterized by

requiring the (1,1) wedge Hessian (and not only its trace!) to be Hölder (in fact,
a slightly stronger characterization holds, see Theorem 3.7 below). When β ≤ 1/2
an even sharper characterization holds for s = e: the full (real) wedge Hessian is
Hölder. Let

P11̄ := ∂2
r +

1

r
∂r +

1

β2r2
∂2
θ ,

and define

Q := {∂r, r−1∂θ, ∂ya
, ∂2

yayb
, ∂r∂ya

, ∂r∂θ, r
−1∂θ∂ya

, P11̄, a, b = 1, . . . 2n− 2}.

Theorem 3.7. (i) There exists a constant C > 0 independent of u such that

||Tu||s;0,γ ≤ C(||Δωu||s;0,γ + ||u||s;0,γ),

for all T ∈ Q. Thus, u ∈ D0,γ
s if and only if Tu ∈ C0,γ

s for all T ∈ Q.
(ii) If β ∈ (0, 1/2], the previous statement holds with Q replaced by

Q ∪ {∂2
r , r

−1∂r, r
−2∂2

θ , r
−1∂r∂θ, r

−1∂r∂ya
, a, b = 1, . . . 2n− 2}.

Also, D0,γ
w ⊂ C

2,min{ 1
β−2,γ}

w .
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Remark 3.8. Part (ii) quantifies the difference between the “orbifold” regime
β ∈ (0, 1/2] and the harder β ∈ (1/2, 1) regime. In fact, one can write down stronger
and stronger characterizations of D0,γ

e under mild assumptions when β ∈ (0, β0) as
β0 ≤ 1/2 approaches 0.

For the proof of (i) and (ii) with s = e, we refer to [141, Proposition 3.3],
and for (i) and (ii) with s = w to [141, Proposition 3.8]. The key ingredient
in the proofs is a precise description of the singularities (or, in other words, of
the the polyhomogeneous structure) of the Green kernel of the Laplacian of the
(curved) reference metric ω (3.5), considered as a distribution on certain blow-up
of X ×X. This is explained in §3.9. For the proof of (i) with s = w for most of the
operators in Q, we also refer to Donaldson [102, Theorem 1]; the verification for the
remaining operators is straightforward from his arguments. Donaldson’s approach
is more elementary in that he only obtains the polyhomogeneous structure of the
Laplacian of the flat model metric ωβ (3.2) (which can be done by separation of
variables arguments, and also goes back to the work of Mooers [183]); using the
Schauder estimate for this flat model he then obtains (i) with s = w by a partition
of unity argument. The advantage of the extra work done in [141] is that the
polyhomogeneous structure of the Green kernel of the curved metric itself allows
much more refined information, e.g., (ii), and also leads eventually to the higher
regularity of solutions of the Monge–Ampère equation—see §3.10—that does not
seem to be accessible using the arguments of [102].

Next, similarly to the definition of the spaces Ck,α
s , also the spaces D0,γ

s can

be defined with respect to any Kähler edge metric of the form ωϕ with ϕ ∈ D̃0,γ
s .

This property is absolutely crucial in applications to ‘openness’ along the continuity
method (§6.4), and to higher regularity (§3.10).

Theorem 3.9. Suppose that u ∈ D̃0,γ
s . Then

D0,γ
s (Δω) = D0,γ

s (Δωu
) := {v ∈ C0,γ

s : Δωu
v ∈ C0,γ

s }.

This is proved in [141, Corollary 3.5]; Donaldson [102] does not state any such
result explicitly, but briefly sketches related ideas in the case s = w in [102, p.
64]. This result is crucial in our approach and we describe the proof in some detail
below.

The goal is to show that D0,γ
s (Δω) = D0,γ

s (Δωu
). First, one observes that this

is true when u is polyhomogeneous, by the explicit polyhomogeneous structure of
the Green kernel of polyhomogeneous elliptic edge operators (see Theorem 3.15
below). Next, note that

Δωu
f =

ωn

ωn
u

n
√
−1∂∂̄f ∧ ωn−1

u

ωn
.

Thus, if u ∈ D0,γ
s then |Δωu

f | ≤ C1(|Δf |+ (
√
−1∂∂̄f, α)ω), where |α|ω ≤ C2, and

C1, C2 are both controlled by a polynomial function of
∑

i,j [uij̄ ]s;0,γ . By Theorem

3.7 (i) these constants are then also controlled by ||u||D0,γ
s

. Thus, D0,γ
s (Δω) ⊂

D0,γ
s (Δωu

).
Since Δωu

is injective on the L2-orthogonal complement to the constants in
D0,γ

s (Δωu
), that we denote by D0,γ

s (Δωu
)′, it is also injective on D0,γ

s (Δω)
′. The

main point is that it is also surjective when restricted to the latter space; since Δωu
:

D0,γ
s (Δωu

)′ → C0,γ
s is by definition a bijection, this immediately gives the reverse
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inclusion and concludes the proof. We now explain the proof of the surjectivity
statement.

The surjectivity follows in several steps. First, given any nonzero f ∈ C0,γ
s there

is a unique solution φ ∈ D0,γ
s (Δωu

)′ to Δωu
φ = f . Approximate u in D0,γ

s (Δω) by
polyhomogeneous u(k), and let φ(k) be the associated solution of Δω

u(k)
φ(k) = f .

Since u(k) are polyhomogeneous, there is a unique constant ck such that φ(k) −
ck ∈ D0,γ

s (Δω)
′, and by Theorem 3.7 (i) (which, as remarked in the beginning of

the proof, applies to ω replaced by any polyhomogeneous metric) this implies an
estimate

(3.16)
∑
Q∈Q

||Qφ(k)||s;0,γ ≤ C(k)(||f ||e;0,γ + ||φ(k)||e;0,γ).

We claim that the constant C(k) in (3.16) is locally uniform in the C0,γ
s norm of

u
(k)

ij̄
(i.e., that if u(k) were supported in some small ball then the constant on the

right hand side of (3.16) would be controlled uniformly in terms of the C0,γ
s norm

of u
(k)

ij̄
). Of course, since ||u(k)

ij̄
−uij̄ ||s;0,γ is uniform in k, this would imply also that

the C(k) are locally uniformly controlled, independently of k, by the C0,γ
s norm of

uij̄ . The claim is true for polyhomogeneous u by the Green kernel construction of

Theorem 3.15. For a more general u ∈ D̃0,γ
s , we freeze coefficients of Δωu

only in a
small neighborhood of any point in M and approximate this operator by a global
polyhomogeneous operator. The estimate above follows for such a concatenated
operator by the standard method of proof that makes clear that the constant in the
estimate depends only on the local C0,γ

s norm of uij̄ . Using a partition of unity to
paste these estimates then concludes the proof of the claim (since both D and M
are compact).

Thus, the φ(k) are uniformly in D0,γ
s (Δω)

′ (note that the constants ck are
uniformly controlled). When s = w we can now take a subsequence converging in

D0,γ′

w (for any γ′ ∈ (0, γ)) to a function φ ∈ D0,γ
w (Δω)

′ that solves Δωu
φ = f . When

s = e, we cover M \D by a countable collection of Whitney cubes so that on each

such cube Tφ(k) converges in C0,γ′

e to Tφ, for all γ′ ∈ (0, γ). Taking a diagonal
sequence then produces a solution φ to Δωu

φ = f that belongs to D0,γ
s (Δω)

′, by
Theorem 3.7 (i). In either case (s = e or s = w), (iii) follows.

Finally, we mention several further basic regularity properties of the Hölder
domains.

Theorem 3.10. (i) For any T ∈ Q \ P11̄, T maps D0,γ
e into C0(M). In

particular, if u ∈ D0,γ
e , then Tu is continuous up to D, and has a well-defined

restriction to D, independent of θ.
(ii) Let γ ≥ 0. Then, D0,γ

e ⊂ C1,α
w for α ∈ (0, 1

β − 1] ∩ (0, 1).

(iii) If u ∈ D̃0,γ
e then u has the partial expansion near D

u = a0(y) + (a01(y) sin θ + b01(y) cos θ)r
1
β +O(r2).

For (i) refer to [141, Corollary 3.6], for some of the operators mentioned, while
the proof for the remaining ones follows from (ii). Part (ii) is the singular analogue
for the usual C1,α estimates for a function in W 2,∞, and can be proved using
[141, Proposition 3.8]—we sketch the proof in Lemma 3.12. In fact, (ii) implies
the statement of (i) holds for a larger class of operators. Finally, (iii) is a corollary
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of Theorem 3.9 and the polyhomogeneous structure of the Green kernel stated in
Theorem 3.15.

3.7. Kähler edge metrics. We start with a completely elementary, yet im-
portant, lemma.

Lemma 3.11. Let g be a continuous Kähler metric on M \ D, and such that
in any local holomorphic coordinate system near D where D = {z1 = 0}, and

z1 = ρe
√
−1θ,

(3.17) g11̄ = Fρ2β−2, g1j̄ = gi1̄ = O(ρβ−1+ε), and all other gij̄ = O(1),

for some ε ≥ 0, where F is a bounded nonvanishing function which is continuous
at D. Then there exists some C > 0 such that in any such coordinate chart

(3.18)
1

C
gβ ≤ g ≤ Cgβ .

Moreover, the converse implication holds.

Proof. Assume first that (3.17) holds. This amounts to showing that 1
C Iβ ≤

[gij̄ ] ≤ CIβ, where Iβ := diag(ρ2β−2, 1, . . . , 1). Let v = (v1, . . . , vn) ∈ Cn be any
vector. Then,

n∑
i,j=1

gij̄vivj ≤ g11̄|v1|2 +
n∑

i,j=2

gij̄vivj +

n∑
j=2

|g1j̄ |2|v1|2 +
n∑

j=2

|vj |2

≤ Cρ2β−2|v1|2 + C
n∑

j=2

|vj |2,

for some C > 0, proving the second inequality (since ρ is small and β ∈ (0, 1)). The
first inequality follows similarly, since (3.17) implies that

(3.19) g11̄ = Fρ2−2β, g1j̄ , gi1̄ = O(ρ1−β+ε), and all other gij̄ = O(1).

Conversely, choosing v = (0, v′) shows that CI ≤ g′ := [gij̄ ]
n
i,j=2 ≤ C ′I, and

thus gij̄ = O(1), for all i, j ≥ 2. Similarly, it follows that g11̄ = O(ρ2β−2). Equation

(3.18) implies C−nωn
β ≤ ωn ≤ Cnωn

β , but

det[gij̄ ] = g11̄ det[gij̄ ]
n
i,j=2 − |(g12̄, . . . , g1n̄)|2g′ ,

where |v|2g′ := vH [gij̄ ]
n
i,j=2v. It follows that |g1j̄ | ≤ Cρβ−1, for all j ≥ 2. �

We define

(3.20) Hε
ω := {ϕ ∈ C∞(M\D)∩C0(M) : ωϕ > 0 on M, and ωϕ satisfies (3.17)}.

We call
He

ω := ∪ε>0Hε
ω,

the space of Kähler edge metrics.
We note that another, simpler, way of deriving the preceeding lemma, but which

conceals some of what is going on, is by working in the singular coordinate chart
(ζ, z2, . . . , zn). In a nutshell, in terms of the singular coordinates, the definition of
a Kähler edge metric simply means that the cross terms in the matrix [gij̄ ] (i.e.,

terms for which precisely one of i and j equals 1) have a fixed rate of decay O(rε/β)
near D, so that the metric is asymptotically a product. In particular, this means
the corresponding Laplacian is also approximated in a certain precise sense by the
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Laplacian of the product of a flat cone and Cn−1 (i.e., the Laplacian of ωβ). This is
very important in proving existence of asymptotic expansions, and structure results
for the Green kernel, as we discuss later. In fact, as will follow from the general
theory we explain later, in essentially all of the discussion below one may take
concretely ε = min{1 − β, β}. To be more precise, we will show that solutions to
essentially any reasonable complex Monge–Ampère equation always lie in He

ω, and
KEE metrics, in fact, even lie in Hβ

ω.
We end this subsection with a lemma that shows that He

ω is a natural choice of
space of Kähler metrics in this context. Indeed, once we have found one reference
Kähler edge metric, we may produce many other such metrics by adding a Kähler
potential with merely bounded complex Hessian (with respect to the singular coor-
dinates). This fact may seem counterintuitive at first. It is absolutely crucial for
all that follows. Its proof relies crucially on the fact that β < 1, or, ultimately, on
the fact that no nonzero 2πβ-periodic function b can satisfy bθθ + b = 0, i.e., −1 is
not in the spectrum of the Laplacian on S1(2πβ), which equals −N0/β

2.

Lemma 3.12. Suppose that η ∈ Hε
ω and that [uij̄ ] is bounded (with respect to

the coordinates (ζ, z2, . . . , zn), i.e., u ∈ D0,0
s ). Then η +

√
−1∂∂̄u ∈ Hε̃

ω, where
ε̃ = min{ε, β, 1− β}.

This is a corollary of Theorem 3.10 (ii). The proof of this result uses the basic
Schauder type estimates in the edge spaces. Indeed, the assumption implies of
course that Δωu = f ∈ L∞. Thus u = Gf + k with k a constant. On the other
hand, it is not difficult to show that both ∂r ◦G and 1

r∂θ ◦G map L∞ to itself (see

Theorem 3.7 (i)). Thus, 1
r∂θu ∈ L∞ and ∂ru ∈ L∞. We will use both of these facts

in a moment. Now, by our assumption, ∂y∂ru = O(1). Integrating twice we find
that u = v(y, θ) + a(r, θ) + O(r) (with a and v having suitable differentiability).
It follows that ∂θ(v + a) = O(r). Plugging r = 0 this implies that ∂θv(y, θ) is a
function of θ alone, but plugging that back in we see that necessarily then v + a
must be a equal to v1(y) + a1(r), with a1(r) = O(r), so u = O(r) + v1(y). We
fix a value of y and regard u as a function on the flat cone {y} × Cβ . We know

that Δβu = P11̄u = F (y) ∈ L∞, and so u = GβF + k (here Δβ = P11̄ denotes the
Laplacian on the flat cone Cβ and Gβ its Green function, while k ∈ kerΔβ). But
now, by the properties of Gβ and Δβ we conclude that u − v1(y) must vanish to

order O(rmin{1/β,2}), and so it follows that ∂r∂yu = O(rmin{1/β−1,1}), from which
the lemma follows.

Remark 3.13. It is a very interesting problem to find regularity properties

enjoyed by functions belonging to D̃0,γ
e . In particular, to find natural conditions

that guarantee when a function in D0,γ
e actually belongs to D̃0,γ′

e for some γ′ > 0.

3.8. The reference geometry. “[A] Hermitian metric has the peculiarity of
favoring negative curvature over positive curvature.”

— Solomon Bochner [35, p. 179].

One of the novelties of [141] was to prove a priori second order estimates for a
fully nonlinear PDE without curvature bounds on the reference geometry, but only
with a one-sided curvature bound. We are not aware of other situations where this
is possible.
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The next lemma shows that there is no uniform bound, in general, for the
curvature of the reference geometry. But, it provides a one-sided bound, which
turns out to be very useful for the Laplacian estimates (see §7.3).

Lemma 3.14. The bisectional curvature of the reference metric ω (recall 3.5)
is bounded from above. In general, it is not bounded from below.

The proof, due to Li and the author, appears in [141, Appendix] and its gen-
eralization to the case of normal crossings in [175, 176]. It relies on a careful
computation, using an adapted normal coordinate system appearing in the work of
Tian–Yau [253]. The lack of the lower bound can be seen directly from the compu-
tations in [141, Appendix] by considering the R11̄11̄ component of the bisectional
curvature, and observing that the upper bound can be made as negative as one
wishes. If one is only interested in proving the upper bound (but without proving
that no lower bound exists), the proof of Lemma 3.14 can be simplified considerably,
as pointed out to the author by J. Sturm in November 2013. Indeed, working lo-
cally on a ball B ⊂M centered at a point in D, one considers the holomorphic map

F : (z1, . . . , zn) �→ (z1, . . . , zn, z
1
β

1 ). Let π : Cn+1 → Cn denote the projection to
the first n components. The Kähler form π�ω0+

√
−1∂∂̄(H(z1, . . . , zn)|zn+1|2) is a

smooth metric on a ball in Cn+1 whose bisectional curvature is uniformly bounded.
Pulling this form back from the complement of {z1 = 0} ∪ {zn+1 = 0} under the
holomorphic map F yields the Kähler form ω0 +

√
−1∂∂̄(H|z1|2β) on Cn whose

bisectional curvature can only decrease by the classical expression for the second
fundamental form of a complex submanifold [124, p. 79]. Even though the map
F is only multivalued, the pull-back of the Kähler form above is continuous single-
valued since H is a smooth function of z1 and the expression |z1|2β is single-valued
under this pullback.

A corollary of both statements in the Lemma is that the Ricci curvature of
ω is unbounded from below: if it were not, the upper bound on the bisectional
curvature would force a lower one as well. As alluded to above, this fact motivates
using the Ricci continuity method that starts out, morally, with a metric whose
Ricci curvature bound is −∞, and gradually produces a better lower bound until,
eventually, arriving at the Kähler–Einstein metric.

In the case of the model edge Cβ×Cn−1 the curvature is identically zero outside
the divisor. In general, it is natural to expect that the holomorphic submanifold
geometry of the divisor D in M should be related to whether a reference metric
exists with bounded bisectional curvature. A first step in this direction was taken
by Arezzo–Della Vedova–La Nave [4].

3.9. The structure of the Green kernel. In this subsection we describe in
detail the structure of the Green kernel in the case M is S2 with D a single point.
The general case is not much more complicated, but we prefer concreteness over
generality in this discussion.

Thus, we start with the singular manifold (S2, p) and blow-up the point p as
in Figure 2. What this means is that we ‘separate’ the different directions in which
one may approach the point p. Each of these directions is now a separate point in
the blow-up. As in §3.4, what this real blow-up amounts to is to introduce polar
coordinates (r, θ) around p, with r(p) = 0. Then X = BlR+

p S2 is the disjoint union

of S2 \ {p} and a circle S1
2πβ of radius 2πβ. It comes equipped with a blow-down

map X → S2 and the inverse image of p is S1
2πβ. (In the real setting a real blow-up
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×

Figure 3. The space X ×X.

←−r

r′

Figure 4. The real blow-up of the origin in the quadrant; the
origin represents any point in the diagonal of ∂X × ∂X.

sometimes also refers to an R blow-up where the resulting fiber over p is a half
circle or RP1; therefore we used the superscript R+ for our ‘oriented’ blow-up.)

We do not describe the Green kernel Gω associated to ω (or any phg edge
metric) on X ×X (see Figure 3), but instead pull it back under one more blow-up
map. The purpose of this is to ‘separate’ certain directions near the boundary
diagonal. In other words, if {(0, θ)} × {(0, θ′)} is a point on ∂X × ∂X there are
many different ways to approach it from the interior: if r, r′ are the radial variables
on each of the two copies of X, we may let r approach zero faster than r′ or vice
versa. Thus we consider r, r′ as coordinates on the positive orthant R2

+ := R+×R+

and blow-up the origin (see Figure 4). The result Bl
R+

(0,0)R
2
+ is the disjoint union of

R2
+\{(0, 0)} and a quarter circle S1

++ of radius π/2. The quarter circle parametrizes
various values of the ratio r/r′, via the map tan−1 : [0,∞) → S1

++. This blow-up
is a purely local construction; we may thus perform it on X ×X, which amounts
to blowing-up each point on the boundary diagonal ∂X × ∂X, or in other words
blowing-up that whole submanifold. We denote the resulting space by the edge
double space

X2
e := BlR∂X×∂XX ×X

(here the R and R+ blow-ups coincide). In higher dimensions, there are 2n − 2
additional conormal directions y. Then we only blow-up the fiber diagonal {r =
r′ = 0, y = y′} which is a strict submanifold of ∂X × ∂X. We denote by

π : X2
e → X2
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the blow-down map. Observe that π−1(∂X × ∂X) is the union of three hypersur-
faces:

rf := π−1
(
{r = 0}

)
, lf := π−1

(
{r′ = 0}

)
,

called the right and left faces, and the new hypersurface

ff := π−1
(
{r = r′ = 0}

)
,

diffeomorphic to S1×S1×S1
++, called the front face. These hypersurfaces all have

coordinate descriptions in terms of polar coordinates about the corner {r = r′ = 0}.
Namely, denote R :=

√
r2 + r′2 and set (ψ, ψ′) := (r/R, r′/R) ∈ S1

++. The double
edge space then is parametrized near its boundary by (R,ψ, ψ′, θ, θ′) (while, by
comparison, X2 was parametrized by (r, r′, θ, θ′)), and rf = {ψ = 0}, lf = {ψ′ =
0},ff = {R = 0}. Away from its boundary X2

e is locally diffeomorphic to M ×M ,
of course, and is parametrized there by coordinates on the latter.

Now, we return to the general setting of a Kähler edge manifold, and describe
Gω as the push-down of a distribution on X2

e under the blow-down map π. For
concreteness, the reader may focus on the example given above, even though the
result below is stated in the general setting. The first main reason for doing so
is that Gω is of course singular along the diagonal of X2, however the diagonal
intersects the boundary nontransversally, while the lifted diagonal

diage := {(R, 1/
√
2, 1/

√
2, θ, θ) : R ∈ R+, θ ∈ S1}

intersects ff transversally at {(0, 1/
√
2, 1/

√
2, θ, θ)} ∼= S1, and the intersection

points lie in the interior of ff. Another reason for working on X2
e is the dilation

invariance structure. Finally, here is the description of Gω, a corollary of a general
result of Mazzeo [172, Theorem 6.1], see [141, Proposition 3.8].

Theorem 3.15. Let g be a polyhomogeneous edge metric with index set Eg with
angle β along D and denote by G the generalized inverse to the Friedrichs extension
of −Δg. Then the Schwartz kernel KG of G is a distribution on X2

e that can be
decomposed as KG = K1 +K2 with the following properties:
K1 is supported on a neighborhood of diage disjoint from lf and rf; R2n−2K1 has a
classical pseudodifferential singularity of order −2 on diage that remains conormal
when extended to ff.
K2 is polyhomogeneous on X2

e with index sets 2− 2n at ff, and E at both rf and lf,
where

E ⊂ {(j/β + k, �) : j, k, � ∈ Z+ and � = 0 for j + k ≤ 1, (j, k, �) �= (0, 1, 0)},

when Eg = {0}, and otherwise E is contained in a larger set that is determined by
Eg and the above set. In particular,

T ◦G : C0,γ
e → C0,γ

e ,

is a bounded operator where T ∈ Q is as in Theorem 3.7.

The proof of this occupies a good part of [172] and we will leave a detailed
exposition of it in our complex setting to a separate exposition.
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SMOOTH AND SINGULAR KÄHLER–EINSTEIN METRICS 65

3.10. Higher regularity for solutions of the Monge–Ampère equation.
The standard theory of elliptic regularity applies directly to the Monge–Ampère
equation, despite it being fully nonlinear [123, §17]. Indeed, the linearization of
the Monge–Ampère equation is simply the Poisson equation (with a potential)—
we review this shortly. It implies that any C2,α solution of (2.3) is automatically
smooth (for an alternative approach see [83]). This assumes, of course, that the
reference form ω is smooth. A penetrating feature of Kähler edge geometry is that
although ω (see (3.5)) is no longer smooth, it is possible to develop an analytical
theory that isolates, so to speak, the only direction in which the geometry is sin-
gular, or, equivalently, in which the associated Laplacian is degenerate (fails to be
elliptic). Thus, KEE metrics turn out to be smooth in all conormal directions. One
could stop here and argue that this is already the right analogue of higher regularity
in the singular setting. However, as already indicated in §§3.4, Taylor’s theorem
does not apply to a merely conormal function. The analogue of smoothness is thus
the space of polyhomogeneous conormal distributions. This is more than an aca-
demic difference. One of the thrusts of this approach is that polyhomogeneity yields
basic geometric information. Also, the proofs of these facts are rather standard by
now—essentially a matter of high-level bookkeeping, somewhat analogously to tools
in algebraic geometry. These proofs have their origin in the fundamental work of
Melrose, developed in-depth in the case of real edges by Mazzeo, and further devel-
oped in the case of complex codimension one edges in [141] and in any codimension
for crossing complex edges of codimension one [175,176]. For the rest of this sub-
section we describe, in broad strokes, how higher regularity is proved in the edge
setting and mention some of its basic analytic and geometric consequences.

A basic fact is that solutions of a general class of complex Monge–Ampère equa-
tions are automatically polyhomogeneous as soon as they lie in the maximal Hölder
domain D0,γ

e . For concreteness, we concentrate on the special class of equations that
we will consider in §6. We denote by PSH(M,ω) the space of ω-plurisubharmonic
functions on M , namely upper semi-continuous functions u from M to [−∞,∞)
such that ωu = ω +

√
−1∂∂̄u is a nonnegative current on M .

Theorem 3.16. Let ω be a polyhomogeneous Kähler edge metric. Suppose that

ϕ ∈ D̃0,γ
s ∩ PSH(M,ω), satisfies

(3.21) ωn
ϕ = ωnef+cϕ, on M \D,

where c ∈ R and f ∈ A0
phg. Then ϕ ∈ A0

phg.

The proof, that we now outline, relies mostly on the linear theory for D0,γ
e .

The detailed proof appears in [141, §4].

Proof. Differentiating (the logarithm of (3.21)) in a conormal direction ya
(the same discussion applies to differentiation in θ), the Monge–Ampère equation
becomes a seemingly linear equation,

(3.22) Δωϕ
∂ya

ϕ = c∂ya
ϕ+ ∂ya

f ∈ C0,γ
e ,

where we used Theorem 3.7 (i) for the inclusion. The nonlinearity comes, of course,
from the fact that the operator Δωϕ

itself depends on ϕ. However, by Theorem

3.9 this is irrelevant, as we assume that ϕ ∈ D̃0,γ
s ⊆ D̃0,γ

e ! Thus, we conclude
that ∂ya

ϕ, ∂θϕ ∈ D0,γ
e . Again, because ϕ ∈ D0,γ

e this implies that ∂y(Δωϕ
ϕ) ∈

C0,γ
e . By induction, ∂l

θ∂
k
y (Δωϕ

ϕ),Δωϕ
(∂l

θ∂
k
yϕ) ∈ C0,γ

e for all l, k ∈ N ∪ {0} with
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l + k > 0, where ∂k
y denotes any operator of the form ∂ya(1)

◦ · · · ◦ ∂ya(k)
, with

a(i) ∈ {1, . . . , 2n − 2}. Thus, by composing with Gωϕ
, we see that ∂yϕ, ∂θϕ are

infinitely differentiable with respect to ∂θ and ∂y. Moreover, by (3.22) and standard
elliptic regularity in the edge spaces [172] it follows that ∂yϕ, ∂θϕ are infinitely
differentiable with respect to r∂r. And the inductive argument above then gives
the same also for ∂l

θ∂
k
yϕ. Namely, ∂yϕ, ∂θϕ ∈ A0.

Next, we write ∂ya
ϕ = Gωϕ

(∂ya
f + c∂ya

ϕ) + κ, where κ ∈ kerΔωϕ
is simply

a constant. We show now that ∂ya
ϕ ∈ A0

phg. We claim that the Green operator

Gωϕ
maps a conormal function to a function in r2A0, at least modulo something

polyhomogoneous (phg). This is an improvement on the general fact (cf. [172,
Proposition 3.28]) that such an operator (we do not go into the details of what
“such” means here, but refer to [141, Lemma 4.2] for a precise statement) maps
A0 to itself. By induction, this is all we need to conclude the proof, as we have
already showed that Δωϕ

∂ya
ϕ = ∂ya

f + ∂ya
ϕ ∈ A0; applying Gωϕ

to both sides

would then show ∂ya
ϕ ∈ r2A0 + A0

phg. But, since f is phg it then follows that

∂ya
f+∂ya

ϕ ∈ r2A0+A0
phg. And so, applying the previous claim again we conclude

∂ya
ϕ ∈ r4A0 +A0

phg, and thus by induction ∂ya
ϕ ∈ A0

phg.

Here is the idea behind the proof of the claim: by a theorem of Mazzeo [172,
Theorem 6.1] we know that Gβ, the Green kernel of the reference metric ω, has a
polyhomogeneous kernel. If all terms in its expansion, with one variable frozen, are
O(r2) or better we would be done. In general though there will be finitely many
(positive, of course) exponents γ1, . . . , γN in the polyhomogeneous expansion of G
that are smaller than 2. (In our setting, there is only one such, 1/β.) But then post-
composing Gβ with ΠN

i=1(r∂r−γi) eliminates these terms. Integrating the equation
ΠN

i=1(r∂r − γi) ◦ Gβv = O(r2) in r thus yields that Gβv = O(r2) +
∑

ui(y, θ)r
γi .

When v ∈ A0 this yields thereforeGβv ∈ r2A0+A0
phg. However, we are dealing with

the Green kernel Gωϕ
which does not necessarily have a phg expansion (since ϕ is

not phg as of yet). However, by Theorem 3.9 the domain D̃0,γ
e (Δωϕ

) is independent

of ϕ ∈ H̃e
ω, and simply equals D̃0,γ

e (see Remark 3.13). In particular, Gωϕ
has the

same asymptotic behavior near the lf and rf of X. In other words, while it is not
phg, it has a partial expansion (the regularity implied by belonging to D0,γ

e ), of the
form a0(y) + (a1(y) cos θ + a2(y) sin θ)r

1/β) + O(r2). Thus, the same argument as
above implies that for v ∈ A0 one has Gωϕ

v ∈ r2A0 +A0
phg.

Thus, ∇yϕ ∈ A0
phg, and by the same reasoning also ∂θϕ ∈ A0

phg. Thus, inte-

grating, ϕ = ϕ0 + ϕ1 with ϕ0 a function of r alone, and ϕ1(r, θ, y) ∈ A0
phg. But

we already know that ϕ ∈ C∞
e . Thus, ϕ0 lies in C∞

e , but then necessarily also in
A0 since it is independent of y, θ. Thus, ϕ0(r) and hence ϕ lie in A0 and, more-
over, ϕ − ϕ0(r) ∈ A0

phg. Thus, to obtain Theorem 3.16 it remains to prove that

∂rϕ ∈ A0
phg.

To that end, we apply ∂r to the logarithm of (3.21). This yields ∂rϕ =
Gωϕ

(∂rf + c∂rϕ) + κ2, where now the term in paranthesis belongs to r−1A0, and
κ2 ∈ R. Since the volume form with respect to which Gωϕ

is defined is asymptoti-

cally equivalent to rdrdθdy we may still apply Gωϕ
to a distribution in r−1A0 and

obtain a distribution that lies in r−1A0. But now we know that Gωϕ
∂rf is actually

bounded, since by Theorem 3.7 (i) ∂rϕ is as ϕ ∈ D0,γ
e . Thus, again, we may treat
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SMOOTH AND SINGULAR KÄHLER–EINSTEIN METRICS 67

the equation as an ODE in r, and show that, in fact, ∂rϕ lies in rA0+A0
phg. As be-

fore, an induction results in ∂rϕ ∈ A0
phg. In conclusion then ϕ ∈ A0

phg, completing
the proof. �

Remark 3.17. A precursor to this sort of argument is the work of Lee–Melrose
[154] on the complex Monge–Ampère equation on a domain, and related work of
Mazzeo on the singular Yamabe problem [173]. We also refer to Rochon–Zhang
[209] for recent work. All of these articles deal with several quite different situa-
tions, but are all on complete spaces, as opposed to our incomplete setting.

We end this subsection by discussing the significance of the terms that appear
in the asymptotic expansion. When the function on the right hand side f has a
certain index set Ef (see (3.13)) the solution then has an index set that will depend
on E,Eω, and Ef where E is the index set of Gβ, and Eω that of ω (see (3.5)), by
which we mean the index set of ψ0 + φ0 where ψ0 is any Kähler potential for ω0

and φ0 is defined in (3.6). In the setting of the Kähler–Einstein equation, one may
determine the index set of the solution from this observation. This is a somewhat
tedious, albeit completely inductive routine—one simply treats the Monge–Ampère
equation as an ODE in r and computes the terms that can occur in the expansion,
relying on our alternative characterization of D0,γ

e (Theorems 3.7 and 3.9). It
follows [141, Proposition 4.3] that solutions to essentially all the complex Monge–
Ampère equations considered in the setting of the Kähler–Einstein equation have
the following expansion:

(3.23) ϕ(r, θ, y) = a00(y) + (a01(y) sin θ + b01(y) cos θ)r
1
β + a20(y)r

2 +O(r2+ε)

for some ε = ε(β) > 0.

Remark 3.18. When β ∈ (1/3, 1/2], one may readily show that the term in
the expansion after O(r1/β) is O(r1/β+1). This is roughly equivalent to the divisor
D being totally geodesic for all β ∈ (0, 1/2) (for β ∈ (0, 1/3) this is related to
Atiyah–LeBrun [5]). This is another justification for calling the regime β ∈ (0, 1/2]
the orbifold regime.

Note that the term of order r1/β in (3.23) is annihiliated by ∂2/∂ζ∂ζ. From this,
and the explicit formulas for the reference metric ω and its derivatives [141, §2.2]
one immediately deduces the following geometric information [141, Theorem 2].

Corollary 3.19. Let ϕ ∈ H̃e
ω ∩ D0,γ

e , and suppose that ωϕ is KEE or else is
a solution of a complex Monge–Ampère equation of the type ( 3.21) with EF (see

( 3.13)) suitably small. Then ωϕ ∈ C
0,min{1, 1β−1}
w , but in general its Christoffel

symbols and curvature tensor are unbounded. More precisely, in the coordinates

(r, θ, y), gij̄ = O(1 + r + r
1
β−1 + r

2
β−2), Rij̄kl̄ = O(1 + r

1
β−2 + r

2
β−4), while Γk

ij =

gkl̄gil̄,j = O(1 + r
1
β−2 + r

2
β−3). Moreover, ωϕ|D is a smooth Kähler metric.

As another corollary, Song–Wang observed that the expansion (3.23) directly
implies that the curvature tensor of a KEE metric is in L2 with respect to the
metric [230, §4.1].

4. Existence and non-existence

In this section we survey necessary and sufficient conditions for existence of
KE(E) metrics. We start in §4.1 with the easier nonpositive curvature regime,
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where the cohomological criterion (3.12) is necessary and sufficient. We then move
on to obstructions (§4.2–4.3), and finally, an essentially optimal sufficient condition
for existence in the positive case (§4.5). In §4.4 we pause to discuss the Riemann
surface case. The existence theorems described in §4.1 and §4.5 are the main
existence results for KE(E) metrics, and their proof uses results from Sections 3, 6,
and 7.

We now review some background that is useful in describing some of the ob-
structions below. Denote by

Hω = {ϕ ∈ C∞(M) : ωϕ := ω +
√
−1∂∂̄ϕ > 0}

the (moduli) space of Kähler potentials representing Kähler forms (equivalently,
metrics) in a fixed cohomology class Ω = [ω]. When we discuss Kähler edge metrics,
the natural replacement is Hε

ω defined in (3.20). The corresponding space of Kähler
forms is denoted by

HΩ = {α is a Kähler form with [α] = Ω}.

These are infinite-dimensional Fréchet manifolds, whose transformations, functions,
forms, and vector fields control different aspects of the KE problem. We first
introduce some basic objects on this space.

The tangent bundle ofHω is isomorphic toHω×C∞(M), and similarly T �Hω
∼=

Hω × Γ(M,Λ2nT �M), the latter factor denoting the space of top degree forms on
M , with the fiberwise pairing given by integration over M . The Mabuchi metric
on Hω is defined by [94,168,221]

(4.1) gM(ν, η)|ϕ :=
1

V

∫
M

νη ωn
ϕ, ν, η ∈ TϕHω

∼= C∞(M),

where V = [ω]n/n!. Note that the constant vector field 1(ϕ) = 1 is of unit norm.
This induces a Riemannian splitting Hω = ιω(HΩ) × R, with dιω(THΩ) ⊥ 1, HΩ

thus identified with a totally geodesic submanifold of Hω passing through 0 ∈ Hω.
Thus, with some abuse of notation, we may speak of geodesics in Hω or in HΩ

interchangeably, with the latter meaning geodesics in ιω(HΩ). Remarkably, 1 is a
gradient vector field for gM [168, Theorem 2.3], and the corresponding potential

(4.2) L : Hω → R

is thus a distance function for gM (in the sense that the norm of its gradient is
one; as an aside we remark that it would be interesting to find an interpretation
of this fact in terms of the Mabuchi distance), as first observed by Mabuchi [167,
Theorem 2.3],[168, Remark 3.3]. It is known as the Aubin–Mabuchi or Monge–
Ampère energy since dL|ϕ = ωϕ

n (see also §5.1), and sometimes also referred to
as the Aubin–Yau functional, and has been studied by many authors, see, e.g.,
[18,21–23,200]. Consequently, since 1 is constant, for any C2 curve γ(s) in Hω,

(4.3) L̈(γ(s)) = gM(1,∇gM
γ̇ γ̇),

with the notation ḟ := df/ds, f̈ := d2f/ds2. That is, if ∇gM
γ̇ γ̇ ≥ 0 then γ(s) is a

geodesic iff L(γ(s)) is linear in s. Note also that ιω(HΩ) = L−1(0).
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4.1. Nonpositive curvature: the Calabi–Tian conjectures. As reviewed
in §2 the early history of Kähler–Einstein metrics revolved around the local version
of this equation. Two decades later, Calabi first formulated an ambitious program
for constructing KE metrics on closedmanifolds. He explicitly formulated in writing
the case of zero Ricci curvature, but in analogy with the uniformization theorem, he
expected that the negative case should then follow as well. The following statement
was first formulated as a theorem in [44], before the existence part quickly became
a conjecture thanks to discussions between Calabi and Nirenberg on the need of a
priori estimates (private communication of E. Calabi to the author, 2011).

Conjecture 4.1. (Calabi’s conjecture 1953 [44–46]) Let (M,J) denote a
closed Kähler manifold with c1(M,J) < 0 or c1(M,J) = 0. Then (M,J) admits a
Kähler–Einstein metrics that are unique up to homothety in the former case, and
unique in each Kähler class in the latter.

When μ < 0, the uniqueness is immediate from the maximum principle: if
u, v satisfy ωn

u/ω
n
v = e|μ|(u−v), then, if u − v is maximized in p ∈ M , the form√

−1∂∂̄(u − v) has non-positive eigenvalue with respect to ωv, and so u − v ≤ 0;
by symmetry v − u ≤ 0, so u = v. When μ = 0 the uniqueness part was proved by
Calabi [46] by exploiting the algebraic structure of the Monge–Ampère equation
(more specifically, properties of determinants and integration by parts). Indeed, if
ωn
u = ωn

v then 0 = ωn
u−ωn

v =
√
−1∂∂̄(u−v)∧T with T a positive (n−1, n−1)-form.

Multiplying by u− v and integrating by parts shows u− v is constant.
The existence part of Calabi’s conjecture was established by Aubin in the neg-

ative case and by Yau in both cases [8, 268] (the zero case under the restrictive
assumption that the manifold admits a reference Kähler metric with nonnegative
bisectional curvature was established earlier by Aubin [6]). The main innovation
was to establish the a priori C0 and Laplacian estimates conjectured by Calabi
and Nirenberg. The higher derivative estimates then followed by work of Calabi
described in §7.8, and by elliptic bootstrapping.

Four decades later, motivated by application to algebraic geometry, Tian for-
mulated a generalization for pairs of Calabi’s conjecture.

Conjecture 4.2. (Tian’s conjecture 1994 [243]) Let (M,J) denote a closed
Kähler manifold and D = D1+ . . .+Dr ⊂M a divisor with simple normal crossing
support. Suppose that c1(M,J)−

∑r
i=1(1−βj)[Dj ] is negative or zero. Then (M,J)

admits a KEE metric with angle 2πβj along Dj that is unique in the former case,
and unique in each Kähler class in the latter.

This conjecture, similarly to Calabi’s original conjecture, was also first stated as
a theorem in Jeffres’ Ph.D. thesis [142,243], but subsequently only the uniqueness
was published [143] due to the need of a priori estimates, as well as a good linear
theory. A program outlining a collaboration between Jeffres and Mazzeo toward
such a linear theory was announced by Mazzeo [174]. As described in Theorem
3.7, two independent sets of linear estimates, in the case of a smooth divisor, were
obtained, finally, first by Donaldson [102], and subsequently in [141]. What was
lacking from the approach suggested in [174] was the simple, but crucial, obser-
vation of [102] that if one simply considers Hölder control only of the complex
(1, 1)-type derivatives, then a Schauder theory can be established; if one consid-
ers the full Hessian then this is not the case, due to the harmonic function z1/β .
In the case of a smooth divisor, this conjecture was resolved by Mazzeo and the



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

70 YANIR A. RUBINSTEIN

author [141], that also established higher regularity of the metric. The key here
was, first, to establish the a priori estimates in the absence of curvature bounds
and, second, to develop a good linear theory in the edge spaces that, among other
things, allows to obtain higher regularity (polyhomogeneity). A different proof of
existence was later given by Guenancia–Pǎun [127] relying on work of Guenancia–
Pǎun–Campana [52] that appeared around the same time as [141] (also around
the same time, Brendle [42] obtained the special case of a smooth divisor and an-
gle β ∈ (0, 1/2] using Theorem 3.7 (i) with s = w whose proof, in turn, appeared
subsequently in [141]). As observed by Datar–Song [81], the existence in the gen-
eral snc case actually follows easily by combining the Chern–Lu approach of [141]
and a standard regularization argument à la Demailly; a more computationally in-
volved proof by Guenancia–Pǎun of the general case appeared slightly earlier than
[81], and around the same time also another approach based on regularization was
developed by Yao [266]. Finally, the general snc case has also been settled by
[175,176] (independently of [127]), where, in addition, the higher regularity of so-
lutions is proved by establishing a linear theory also in the snc case; such a theory
is considerably more complicated than in the smooth divisor case.

Much of Sections 3, 6, and 7 are devoted to describing the proof of Conjecture
4.2 due to Mazzeo and the author [141, 175]. In fact, the proof of Conjecture
4.2 is, in fact, a corollary of the proof of the parallel result in the harder positive
case—Theorem 4.13. The strategy of proof, following [141], is described in §4.5
below, where the latter result is stated. We also survey other approaches in §6.6.

Fulfilling one of the original motivations for introducing edges—see §3.1, the
following result was first obtained in 2011 in [141] (an alternative proof was given
in 2013 by Guenancia–Pǎun [127]):

Corollary 4.3. (KEE metrics on all projective manifolds) Every projective
manifold admits a KEE metric of negative curvature for any angle 2πβ ∈ (0, 2π).

In fact, on any projective manifold M there exists an ample class H. Therefore,
given β ∈ (0, 1), for large enough m = m(β) ∈ N, both |mH| admits a smooth
representative by Bertini’s theorem, and the class KM + (1 − β)mβH is positive.
Note that if M is minimal, i.e., KM is nef, then one may takemβ = 1 independently
of β by Kleiman’s criterion, so that the fixed pair (M,H) admits KEE metrics for
all β ∈ (0, 1).

Problem 4.4. Let M be minimal and H a smooth ample divisor. Describe the
limiting behavior of the KEE metrics on (M,H) as β tends to 1.

Example 4.5. To illustrate some of the new metrics arising from Corollary 4.3
consider the projective plane P2 which is typically thought of as ‘positively curved’.
By choosing a smooth plane curve D of degree d ≥ 4 and any β ∈ (0, (d−3)/d), one
can thus construct a KEE metric of negative Ricci curvature. As d →∞ the angle
2πβ can be made arbitrarily close to 2π. Of course, this example can be generalized
to any Pn, with D a smooth hypersurface of degree d, and β ∈ (0, (d− 1− n)/d).

Problem 4.6. As d→∞, does the divisor D becomes dense in Pn with respect
to the KEE metric? How do the diameters of D and M behave? What is a Gromov–
Hausdorff limit of such a metric space (for different limiting values of β)?

The existence problem in the positive Ricci curvature realm is more compli-
cated, as the cohomological assumption is not sufficient. In the rest of this section
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we first describe obstructions to existence, and then, finally, formulate a general
existence criterion.

4.2. Reductivity of the automorphism group. The (connected) isometry
group of the round 2-sphere complexifies to give the (identity component of the)
Möbius group of its conformal transformations. A similar fact also holds for the
isometry group of a football: it complexifies to the conformal transformations that
fix the poles, or cone points. Matsushima’s theorem states that the same is true
for any KEE manifold.

Theorem 4.7. Let (M,J,D, g) be a KEE manifold. Let Isom0(M, g) denote
the identity component of the isometry group and denote by Aut0(M,D) the identity
component of the Lie group of automorphisms preserving D. Then Aut0(M,D) =
Isom0(M, g)C. In particular, Aut0(M,D) is reductive.

Matsushima’s original result was proved for KE manifolds and extended to con-
stant scalar curvature manifolds by Lichnerowicz [160,171]. The singular version
appearing in [60] follows the same lines, by using regularity results from [141]. A
more general result (assuming the manifold only has a weak KE metric in the sense
of [108]) but in the special case M is Fano and D ∈ | − KM | can be found in
[63,249].

Instead of reviewing the proofs above, we describe a formal proof due to Don-
aldson in the smooth setting, in the spirit of infinite-dimensional geometry [98].

First, let diff(M,D) denote the Lie algebra of vector fields on M that van-
ish on D, and denote by ham(M,D, ω) the Lie subalgebra of fields X satisfying
[ιXω] = 0. The corresponding Lie subgroup, Ham(M,D, ω), consists of Hamilton-
ian diffeomorphisms of (M \D,ω) that preserve D. The group Ham(M,D, ω) acts
in a natural way on the space J of ω-compatible complex structures. Furthermore,
J comes equipped with a natural symplectic structure. A result of Donaldson in
the smooth setting shows that the Ham(M,D, ω)-action on J is Hamiltonian, with
a moment map given by the scalar curvature s(ω, J) minus its average. As long
as we restrict to diffeomorphisms F that preserve polyhomogeneity and for which
further F �ω − ω =

√
−1∂∂̄uF , with uF ∈ D0,γ

w , it is not hard to show that this
result extends to the edge setting.

Now, suppose a holomorphic Hamiltonian group action G can be complexified
to GC. A basic fact in finite-dimensional moment map geometry says that for an
element belonging to the zero of the moment map, the isotropy group of the GC-
action is the complexification of the isotropy group of the G-action. Now for any
J ∈ J the isotropy group of Ham(M,D, ω) are those diffeomorphisms of M \ D
that preserve both J and ω, i.e., isometries. Similarly, if one is willing to think of
Ham(M,D, ω)C as all diffeomorphisms preserving D and the (1,1)-type of ω, then
the isotropy group of J can be identified with Aut(M,D) (some motivation for such
a formal identification is discussed in [94,221]). Thus, if J ∈ J is a constant scalar
curvature structure, the Matsushima–Lichnerowicz criterion follows.

Example 4.8. The automorphism group of all strongly asymptotically log del
Pezzo pairs (these pairs are defined in Definition 8.6) are computed in [60]. Here
are some explicit examples. The pair (Pn, H) with H a hyperplane in Pn, satisfies

Aut(Pn, H) ∼= Aut(Pn, p) ∼= Aut(BlpP
n) ∼= Gn

a �GLn(C),
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for a point p ∈ Pn, where BlpP
n denotes the blow-up of Pn at p, and where Ga

the additive group (C, +). The latter group is not reductive. This generalizes
the well-known obstruction to the existence of a constant curvature metric on the
teardrop (S2 with one cone point), see §4.4 below (another way to see this pair is
obstructed is to use the Bogomolov–Miyaoka–Yau inequality [230,243]). For the
pair (P2, D), with D ∈ |2H| a smooth quadric, any automorphism of D lifts to an
automorphism of P2, since P2(H0(D,−KD)) = P2 (again, note that Aut(P2) →
Aut(D) is injective, since an automorphism of P2 can only fix a linear subspace).
Thus Aut(M,D) equals PGL2(C) (and is reductive). This pair, however, turns out
to be obstructed only when β ∈ (0, 1/4] [157].

4.3. Mabuchi energy, Futaki character, and their relatives. When (2.2)
holds, the KE problem reduces to finding a constant scalar curvature metric in Hω.
Indeed, ∂̄sω = ∂�Ric ω, where sω = trωRicω, denotes the scalar curvature (more
precisely, half of the standard convention in Riemannian geometry). Or simpler,
sωω

n = nRicω∧ωn−1 and thus sω is constant iff Ricω is harmonic, i.e., a multiple
of ω. This can be considered as an easy Kählerian analogue of the Obata theorem
in conformal geometry.

Thus, it is natural to consider the following vector field on Hω:

(4.4) s : ω �→ sω − gM(sω, 1) = sω − nc1.[ω]
n−1/[ω]n.

4.3.1. Mabuchi K-energy. The zeros of the vector field s are the constant scalar
curvature (csc) metrics inH, and its integral curves are the trajectories of the Calabi
flow [48]. A remarkable fact is that s is in fact a gradient vector field ∇ME0 = s
[167]. Its potential E0 : Hω ×Hω → R

E0(ω0, ω1) =

∫
γ

s�,

is known as the Mabuchi K-energy, where s� denotes the 1-form associated to s via
gM, and γ is any (sufficiently regular) path between ω0 and ω1.

We now mention several fundamental properties of Mabuchi’s K-energy due
to Bando–Mabuchi [14]. Any critical point of E0 is KE as already remarked; and
in fact all such critical points lie in a connected finite-dimensional totally geodesic
submanifold of HΩ parametrizing all KE metrics in HΩ and isometric to the sym-
metric space Aut0(M,J)/Isom0(M,ωKE) (the zero subscript stands for the identity
components of these groups)—the orbit of a single KE metric ωKE ∈ HΩ under the
action of the identity component of Aut(M,J) on HΩ by pull-back. Moreover, a
computation shows that the second variation of E0 at a critical point is nonnega-
tive, so KE metrics are local minima. A more difficult result is that KE metrics are
in fact global minima of E0. Thus, the KE problem is equivalent to determining
when E0 attains its absolute minimum. In particular, for a solution to exist, E0

must be bounded from below. In practice, it is easier to use this criterion to prove
non-existence, as we discuss in the next paragraph. A stronger criterion introduced
by Tian [244], “properness of E0”, does turn out to be equivalent to existence; see
§5.

4.3.2. Futaki character. A näıve way to show that E0 is unbounded from below
is to find a path parametrized by R+ along which the derivative of E0 is uniformly
negative. The simplest kind of path arises from a holomorphic vector field, and
is the pull-back of a fixed metric by a one-paramter group of automorphisms. To
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spell this out, denote by ψX the vector field on Hω associated to the holomorphic
vector field X,

ψX : ω �→ ψX
ω ∈ C∞(M),

with LXω = dιXω =
√
−1∂∂̄ψX

ω , and
∫
ψX
ω ωn = 0. Thus, ψX is tangent to ιω(HΩ).

Moreover, if γ(s) is an integral curve of ψX in ιω(HΩ), then ω(s) := ι−1
ω γ(t) =

(exp sX)�ω(0) and L̇(γ(s)) = gM(1, ψX)|ω(s) =
∫
ψX
ω(0)ω(0)

n
= gM(1, ψX)|ω(0)

since ψX
ω(s) = (exp sX)�ψX

ω (0) from the definition of ψX and the fact that the

pull-back by an automorphism commutes with ∂∂̄. Thus, γ(s) is a geodesic by
(4.3).

Along such geodesics Ė0(ω(0), ω(s)) = gM(s, ψX)(γ(s)) is manifestly constant
in s. What is less obvious is that this latter constant does not depend on the
initial metric ω(0). To see this, note that s�= dE0 is evidently a closed form (here
� and � denote the “musical operators” associating to a vector field a one-form
via the metric gM and vice versa). Denote by exp tψX the flow on Hω associated
to ψX , given by pull-back by exp tX. Since the scalar curvature is natural then
(exp tψX)�s� = s�. Combining these facts, LψX s� = dιψX s� = 0. Thus, ψX(E0)
is constant on Hω, as claimed. It is thus denoted by F (X), and is called the
Futaki invariant of X [39,49, 114]. Since F (−X) = −F (X), it follows that F :
aut(M,J)→ R must vanish identically or else E0 is unbounded from below.

Like most objects in Kähler geometry, also the above discussion generalizes in a
straightforward manner to include edges when (3.12) holds. Considering the 1-form

s�β : ω �→ (sω − nc1.[ω]
n−1/[ω]n)ωn − (1− β)ωn|D,

proofs conceptually similar to the ones in the smooth setting show that this 1-

form is closed, admits a potential Eβ
0 , and an associated Futaki character on the

Lie algebra aut(M,D) of holomorphic vector fields vanishing on D, and that Eβ
0

must be bounded from below when a KEE metric exists. To obtain these results
one works on the space Hε

ω (3.20), where integration by parts arguments, as in
the smooth setting, are justified, thanks to the higher regularity results of [141]
discussed in §3.10.

We refer to [89, 115, 156, 163, 191, 246] for explicit computations of Futaki
invariants.

Remark 4.9. In the smooth 2-dimensional Fano setting Futaki’s and Mat-
shusima’s obstructions coincide. But in higher dimensions, or else in the singular
two-dimensional setting, there exist examples where only one of the obstructions
appears. For the latter see §9. We now give an example of the former. For in-
stance, P(E), where E = OP1(−1)⊕OP2(−1) is the rank 2 bundle over P1 × P2, is
a Fano 4-fold with reductive automorphism group and nonvanishing Futaki char-
acter [117, pp. 24–26] (see also [114, 262]). On the other hand, there exists a
Fano 3-fold whose connected automorphism group is Ga = (C, +), see case 2) in
the main result of Prokhorov [207], and so its Futaki character must vanish by a
theorem of Mabuchi [169, Theorem 0.1]. We also remark that for some time it was
believed that these two obstructions should be also sufficient [114, §4], [167, p.
575], [138, Conjecture E]. This was verified by Tian for del Pezzo surfaces [240]
(see §9), but disproved for 3-folds, as we discuss next.
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4.3.3. Degenerations and geodesic rays. One-parameter subgroups of automor-
phisms are particularly amenable to computations, as we saw in the previous sub-
section. Yet, generic complex manifolds do not admit such automorphisms, and
the complexity of E0 goes beyond automorphisms: Tian constructed Fano 3-folds
with no nontrivial one-parameter subgroups of automorphisms that admit no KE
metrics [244]. As a replacement, Tian suggested to consider M as embedded in a
one-parameter family of complex manifolds and consider a C� action on this whole
family. He observed that one may still associate a Futaki type invariant to this fam-
ily, often referred to as a special degeneration or test configuration, and this reduces
to the ordinary invariant when the family is a product. (Of course, we are glossing
over many technical details here, among them that the action should lift to an ac-
tion on a polarizing line bundle, and that the invariant is computed by considering
high powers of this bundle. As noted in the Introduction, we refer to Thomas [237]
for GIT aspects of KE theory.) Furthermore, he conjectured, in what became later
known as the Yau–Tian–Donaldson conjecture, that if the sign of this invariant is
identical for all special degenerations, and is zero only for product configurations,
then the manifold should admit a KE metric [244]. This criterion is called K-
polystability. In Tian’s original definition only certain singularities were allowed on
the “central fiber” of such a degeneration. Donaldson extended this to much more
general ones [97]. Li–Xu finally showed that the original definition suffices [158].
A different definition of stability has been introduced by Paul [194,195,251], who
also conjectured its equivalence to the existence of KE metrics. Very recently, a
solution to these conjectures has been announced by Chen–Donaldson–Sun and
Tian [63,249], crucially building upon the theory of KEE metrics described in this
article, and in particular on [102,141]. Shortly after the appearance of [63,249],
Székelyhidi observed that those may be adapted to give similar conclusions without
using KEE metrics [234].

Recently, Ross–Witt-Nyström introduced the notion of an analytic test con-
figuration [212]. Very roughly, in their approach the singularities of the central
fiber are replaced by a “singularity type” of a curve of ω-psh functions, and a
(usually singular) generalized geodesic ray is constructed out of this data. This
generalized previous constructions of Arezzo–Tian, Phong–Sturm, Song–Zelditch,
that constructed such rays out a degeneration in the sense of the previous para-
graph [2,201,229]. A generalized, or weak, geodesic existing for time s ∈ [0, T ], is
a solution to the homogeneous complex Monge–Ampère equation on the product
ST ×M , where M is a strip [0, T ]×R of width T . It need not be a path in H, but
only in PSH(M,ω). These can be regarded as bona fide geodesics if one enlarges
the space of Kähler metrics appropriately, as considered by Darvas [78]. A different
approach to construction of geodesic rays is suggested by Zelditch and the author
via the Cauchy problem for the Monge–Ampère equation [217–219].

Coming full circle, a conjecture of Donaldson states that the existence problem
should actually be completely characterized by generalizing Futaki’s criterion to all
geodesic rays. Namely, the non-existence of a csc Kähler metric is conjectured to
be equivalent to the existence of a geodesic ray (whose regularity is not specified in
the conjecture) along which the derivative of the K-energy is negative [94].
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4.3.4. Flow paths and metric completions. Another conceivable way to “desta-
bilize” a Fano manifold is to use Hamilton’s (volume normalized) Ricci flow [129],

(4.5)
∂ω(t)

∂t
= −Ricω(t) + ω(t), ω(0) = ω ∈ Hc1 ,

which preserves the space Hc1 of Kähler forms cohomologous to c1 and exists for all
time [54]. A theorem of Perleman asserts that the flow will converge to a Kähler–
Einstein metric if and only if such a metric exists [256]. Thus, it is tempting to
hope that Ricci flow trajectories could actually give another way of constructing
geodesic rays. The following conjecture was suggested by La Nave–Tian [152, §5.4],
based on a description of the Ricci flow as a Monge–Ampère equation in one extra
dimension, that should bear a relationship to the homogeneous complex Monge–
Ampère equation governing geodesics in the Mabuchi metric (4.1).

Conjecture 4.10. The Kähler–Ricci flow is asymptotic to a gM-geodesic in a
suitable sense.

The first attempt to understand the metric completion of Hω is due to Clarke
and the author [75, Theorem 5.6] where the metric completion with respect to the
Calabi metric is computed, motivated by an old research announcement of Calabi
[44] that speculated a different answer. Calabi’s metric is the L2 metric on the
level of Kähler forms, that also takes the form

(4.6) gC(ν, η)|ϕ :=

∫
M

ΔϕνΔϕη
ωn
ϕ

n!
.

Interestingly, Calabi’s metric was his original motivation for introducing the Calabi
conjecture [44], see [75, Remark 4.1]. The following result relates degenerations
arising from the Ricci flow, the existence problem of KE metrics, and the metric
geometry of Hω.

Theorem 4.11. Let (M,J) denote a Fano manifold. The following are equiv-
alent:
(i) (M,J) admits a KE metric;
(ii) Any Ricci flow trajectory in Hc1 converges in the Calabi metric gC (4.6).

Note that the derivative of the K-energy is negative along the Ricci flow. Also,
any divergent path must have infinite length in the corresponding metric. Thus, this
result stands in precise analogy to Donaldson’s conjecture on “geodesic stability,”
with Ricci flow paths taking the place of gM-geodesic rays. This gives some intuitive
motivation both for Donaldson’s conjecture and for Conjecture 4.10. We conjecture
that these statements are also equivalent to the statement that any Ricci flow
trajectory in Hc1 converges in the Mabuchi metric gM (4.1). A weaker statement
was obtained by McFeron [178] where “converges” is replaced by “has finite length”.

Convergence in the metric sense is rather weak from a PDE point of view. Thus,
the main point in proving this theorem is to show that such convergence implies
strong convergence. A sequence of Kähler metrics ωi converges in the Calabi metric
precisely when the volume forms ωn

i converge in L1(M,ωn
0 ) [75, Corollary 5.5], and

in particular do not charge Lesbegue null sets. Now, the limit along the Ricci flow
converges to a metric that charges an analytic subvariety [75, Lemma 6.5] (this
builds on results of Nadel [189,190] and the author [215]), which proves that (ii)
implies (i). The converse is an immediate corollary of the exponential convergence
of the flow when a KE metric exists [203,256].
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Finally, we remark that both Donaldson’s conjecture and Conjecture 4.10 should
be related to the Hamilton–Tian conjecture, stipulating that the Kähler–Ricci flow
on Fano manifolds should converge in a suitable sense to a Kähler–Ricci soliton
(with respect to a possibly different complex structure) with mild singularities
[244, Conjecture 9.1]. This relation could be related to the following problem.

Problem 4.12. Determine which gM-geodesic rays (possibly non-smooth) come
from automorphisms of a manifold with a nearby complex structure.

For smooth Riemann surfaces the Ricci flow converges to a constant scalar cur-
vature by results of Hamilton and Chow [72,130], and to a soliton in the case of
orbifold Riemann surfaces (i.e., angles βi of the form 1/mi with mi ∈ N) [73]. The
Hamilton–Tian conjecture was also recently established in the setting of conical
Riemann surfaces [177] and in the smooth 3-dimensional setting by Tian–Zhang
[254]. The smooth 2-dimensional case was previously known by Tian’s uniformiza-
tion of del Pezzo surfaces relying on their classification (see Remark 4.9 and the
introduction of §9) and Tian–Zhu’s generalization of Perleman’s convergence result
for the Kähler–Ricci flow [256].

Finally, we mention that much of the discussion above has an analogue for the
Calabi flow [48]. Calabi conjectured that the eponymous flow exists for all time
and converges to a csc or, in an appropriate sense, to an extremal metric. The
most general long time existence result known is due to Streets [231] though the
question of regularity of such weak flows is open (assuming curvature bounds along
the flow a smooth solution exists for all time by Chen–He [64]). An analogue of
Conjecture 4.10 in this setting is shown by Chen–Sun [66]. It would be interesting to
understand an analogue of Theorem 4.11. We mention in this context that according
to [64, Theorem 4.1] (see [55, §3] for a recent alternative and conceptual proof)
the Calabi flow converges exponentially fast as soon as it converges smoothly, say.
In addition, a result of Berman states that, when the Kähler class is a multiple of
the canonical class, the Calabi flow, when it exists, converges to a Kähler–Einstein
metric when one exists [18, Theorem 1.4]. Finally, results of Chen–He, Feng–
Huang, He, Huang, and Tosatti–Weinkove, among others, give various conditions
for convergence of the Calabi flow [65,111,133,137,258].

4.4. Conical Riemann surfaces. It is interesting to contrast the general
results surveyed so far with the 1-dimensional picture: when can one uniformize
a conical Riemann surface? By uniformization we refer to the construction, in a
given conformal class, of a constant scalar curvature metric with prescribed conical
singularities. This question was studied, in the negative case, already in Picard’s
work more than a century ago [205,206] and was first treated definitively in Troy-
anov’s thesis [259,260] (see also McOwen [179,180]) where a sufficient condition
for existence was established; uniqueness and necessity of this condition were ad-
dressed by Luo–Tian [165]. We refer to [177] for background and an alternative
approach via the Ricci flow (see also [269,270] for the nonpositive cases).

Fix a smooth compact surface M , along with a conformal, or equivalently, com-
plex structure J . A divisorD is now a collection of distinct points {p1, . . . , pN} ⊂M
and the associated class c1(M,J)−

∑
(1−βj)pj , that can be thought of as a modified
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Figure 5. The teardrop and football (with different angles) soli-
tons with non-constant curvature, and a constant curvature foot-
ball with equal angles (courtesy of D. Ramos [208]).

Euler characteristic, is

(4.7) 2− 2g(M)−
N∑
j=1

(1− βj).

In particular, this is now a number, and so the cohomological condition (3.12) is
always satisfied. In a local conformal coordinate chart near each pj , g =

√
−1γjdz⊗

dz =
√
−1γj |dz|2, with γ = |z|2βj−2Fj and Fj bounded. Suppose that g has

constant curvature away from the cone points. The Poincaré–Lelong formula asserts
that −Δg log |z| is a multiple of the delta function at {z = 0} (this can be seen
by excising a small neighborhood near the cone point and using Stokes’ formula).
Together with the standard formula for the scalar curvature, Kg = −Δg log γ (up
to a constant factor), it follows that

(4.8) Kg − 2π
∑

(1− βi)δpi
= const,

with the constant given by (4.7). The existence in the nonpositive regime uses
standard methods as in the smooth setting, e.g., the variational method of Berger
[17], or the method of sub- and super-solutions used by Kazdan–Warner [145]. A
somewhat surprising discovery of Troyanov was the sufficient condition

(4.9) βj − 1 >
∑
i �=j

βi − 1, for each j = 1, . . . , N ,

for existence in the positive case, that followed by generalizing Moser’s inequality
[185, 186] to the singular setting. For instance, if N = 2, this is violated when
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β1 �= β2. As observed by Ross–Thomas, this condition can be rephrased by saying
that the Futaki invariant of the pair (M,

∑
(1−βi)pi) has the right sign, or that the

pair is slope (poly)stable [211, Theorem 8.1] (see [211, Remark 8.4] for a careful
treatment of the equality case in (4.9)). The only additional unobstructed pair is
N = 2 with β1 = β2, and such a csc metric can be constructed explicitly using
ODE methods; when β1 �= β2 or N = 1 one can still construct a shrinking Ricci
soliton [130] (see also [26,208]). These are depicted in Figure 5. We also remark
that [141] and Berman’s work gave a new proof of Troyanov’s original results [18],
and Berndtsson’s work gave a new approach to uniqueness [25]. Finally, the higher
regularity of such a metric was only obtained much later [141], as a corollary of
Theorem 3.16.

The variational approach has recently been extended considerably through the
work of Malchiodi et al. to allow angles β > 1, even when coercivity fails, see, e.g.,
[15,56]. For some higher regularity results also in this regime we refer to [177].

4.5. Existence theorem for positive curvature. The following essentially
optimal existence result in the positive case is due to [141]. It parallels and general-
izes Tian’s theorem from the smooth setting [246, §6]. We postpone the definition
of properness to §5.2.

Theorem 4.13. (Kähler–Einstein edge metrics with positive Ricci curvature)
Let (M,ω0) be a compact Kähler manifold, D ⊂ M a smooth divisor, and suppose
that β ∈ (0, 1] and μ > 0 are such that

c1(M)− (1− β)[D] =
μ

2π
[ω0],

and that the twisted K-energy Eβ
0 is proper. Then, there exists a Kähler–Einstein

edge metric ωϕKE
with Ricci curvature μ and with angle 2πβ along D, that is unique

up to automorphisms that preserve D. This metric is polyhomogeneous, namely,
ϕKE admits a complete asymptotic expansion with smooth coefficients as r → 0 of
the form

(4.10) ϕKE(r, θ, z2, . . . , zn) ∼
∑
j,k≥0

Nj,k∑
�=0

ajk�(θ, z2, . . . , zn)r
j+k/β(log r)�,

where locally D is cut-out by z1, r = |z1|β/β and θ = arg z1, and with each ajk� ∈
C∞. There are no terms of the form rζ(log r)� with � > 0 if ζ ≤ 2. In particular,

ϕKE ∈ A0 ∩ D0, 1β−1
w , i.e., ωϕKE

has infinite conormal regularity, and is ( 1β − 1)-

Hölder continuous with respect to the reference edge metric ω.

A parallel result in the snc case can be stated [175,176]. In fact, the a priori
estimates of [141] apply to the snc case without any change. The essential new
difficulty, however, as compared to the smooth divisor case, is to extend the lin-
ear theory to one with crossing edges. This is new even in the real setting, and
goes beyond the original methods of Mazzeo [172]. A different approach to the
existence, avoiding such linear theory, but producing only D0,0

w solutions without
Hölder estimates on the metric (or even continuity of the metric up to D) nor higher
regularity, and under the assumption that a C0 (or even a weaker) solution exists,
has been developed by Guenancia–Pǎun [127] (a similar result is obtained by Yao
[266] who derives the C0 estimate based on the approximation scheme of [63,249]),
as described in §4.1. Their approach starts from the C0 solution constructed by
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Berman [18] and [141], and produces a D0,0
w estimate by a careful approximation

by smooth metrics1. Finally, the uniqueness is due to Berndtsson [25].

Strategy of proof of Conjecture 4.2 and Theorem 4.13. The proof
uses results from Sections 3, 6, and 7. We now describe how these results piece
together.

Solving the KE equation is equivalent to solving the Monge–Ampère equation
(3.7). We embed this equation in a one-parameter family of equations (6.3), called
the Ricci continuity path (Ricci CP), and define as usual the set

I := {s ∈ (−∞, μ] : (6.3) with parameter value s admits a solution in D0,γ
w ∩

C4(M \D)}.

Equation (6.3) with parameter value μ is precisely (3.7). By Proposition 6.1, there
exists some S > −∞ such that (−∞, S) ⊂ I, so that I is not empty. Furthermore,
I is open. As a matter of fact, the linearization of (6.3) at the parameter value s is
given by Δωϕ(s)

+s. This is clearly invertible when s < 0, and is also invertible when
s > 0 since, as shown in §7.1, the first eigenvalue of Δωϕ(s)

+ s is positive whenever

s ∈ (0, μ). Invertibility at s = 0 follows by working on the orthogonal complement
of the constants [9]. Thus, Theorem 3.7 (i) yields the openness. The fact that
I is closed (and hence equal to (−∞, μ]) follows from Theorem 6.3. Thus, (3.7)
admits a solution in D0,γ

w ∩ C4(M \D). Theorem 3.16 implies that the solution is
polyhomogeneous and belongs to A0

phg; Equation (3.23) further implies the precise
regularity statements about the solution. �

Note that the proof gives a new and unified proof for the classical results of
Aubin, Tian and Yau, on the existence of smooth KE metrics, in that it uses a
single continuity method for all signs of μ. This point is discussed in detail in §6.2.

Finally, consider the special case that M is Fano and D is a smooth anti-
canonical divisor (the existence of such a divisor is highly nontrivial, we refer to
Problem 8.9 and the discussion there). Then, as noted by Berman [18], the twisted
K-energy is proper for small μ = β > 0. Theorem 4.13 thus gives the following
corollary conjectured by Donaldson [101].

Corollary 4.14. Let M be a Fano manifold, and suppose that there exists
a smooth anticanonical divisor D ⊂ M . Then there exists some β0 ∈ (0, 1] such
that for all β ∈ (0, β0) there exists a KEE metric with angle 2πβ along D and with
positive Ricci curvature equal to β.

Li–Sun [157] observed that the exact same arguments actually prove existence
also in the plurianticanonical setting: supposing there exists a smooth divisor D
in | − mKM | (this always holds if M is Fano and m ∈ N is sufficiently large by
Kodaira’s theorem), there exists a small β0 > 0 such that there exists a KEE metric
with β ∈ (1− 1

m , 1− 1
m + β0) along D and with μ = 1− (1− β)m.

1Just before posting this article, Guenancia–Pǎun have considerably revised their article
[127]. In this version of their article they also develop, among other things, a new alternative

approach for the D0,γ
w estimate.
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5. Energy functionals

The Mabuchi energy was crucial in stating the main existence theorem (The-
orem 4.13). The purpose of this section is to describe several energy functionals,
including the Mabuchi energy, that cast the Kähler–Einstein (edge) problem as a
variational one. (The variational approach can be applied to much more general
settings, and we do not seek full generality, for which we refer to Berman et al.
[18, 22, 23].) First, in §5.1, we describe the Aubin energy functionals, that are
nonlinear generalizations of the W 1,2-seminorm. Using these functionals it is easy
to construct the Ding functional whose Euler–Lagrange equation is the inhomoge-
neous Monge–Ampère equation. Using the Aubin energies, one can then define a
notion of relative compactness of level sets of an energy functional, and this leads to
a calculus of variations formulation of the Kähler–Einstein problem in §5.2. Both
the Mabuchi and Ding energies can be defined in a more conceptual way, using
Bott–Chern forms. We describe this in detail in §5.4 since we are not aware of a
single easy-to-read reference for this (we refer to [198,228] for the related Deligne
pairing formalism). In §5.3 we also describe other natural functionals, the Kähler–
Ricci energies, that lend themselves to a similar description, mainly to illustrate the
richness of the theory, but also to show that there are many more-or-less equivalent
functionals whose variational theory underlies the KE problem. Subsection 5.5 de-
scribes a relation between the Ding energy and the Mabuchi energy, involving the
Legendre transform. Building on the preceeding subsections, in §5.6 we prove the
equivalence, in suitable senses, of the Ding, Mabuchi, and Kähler–Ricci energies.

5.1. Nonlinear Dirichlet energies and the Berger–Moser–Ding func-
tional. The most basic functionals, going back to the work of Aubin [9], are defined
by

(5.1)

I(η, ηϕ) =
1

V

∫
M

√
−1∂ϕ ∧ ∂̄ϕ ∧

n−1∑
l=0

ηn−1−l ∧ ηlϕ =
1

V

∫
M

ϕ(ηn − ηnϕ),

J(η, ηϕ) =
V −1

n+ 1

∫
M

√
−1∂ϕ ∧ ∂̄ϕ ∧

n−1∑
l=0

(n− l)ηn−l−1 ∧ ηlϕ.

The functionals I, J , and I − J are all equivalent (and hence the latter is nonneg-
ative), in the sense that 1

nJ ≤ I − J ≤ n
n+1I ≤ nJ. Granted, these might not look

so ‘basic’ at a first glance. Let us give some motivation to these definitions.
The first motivation comes from the calculus of variations: is there a sort of

nonlinear Dirichlet energy whose Euler–Lagrange equation is (2.3)? In the case
n = 1 such an energy was studied by Berger and Moser [17,186]
(5.2)

F (η, ηϕ) =

⎧⎪⎨⎪⎩
1

V

∫
1

2

√
−1∂ϕ ∧ ∂̄ϕ− 1

V

∫
ϕη − 1

μ
log

1

V

∫
efη−μϕη, for μ �= 0,

1

V

∫
1

2

√
−1∂ϕ ∧ ∂̄ϕ− 1

V

∫
ϕη +

1

V

∫
ϕefηη, for μ = 0.

(Recall the definition of fη (3.9).) Its critical points are precisely constant scalar
curvature metrics in the conformal class. It is straightforward to generalize in higher
dimensions the last term to 1

μ log 1
V

∫
efη−μϕηn (respectively, 1

V

∫
ϕefηηn) so that

its variational derivative comes out to be the right hand side of (2.3) (up to the
implicit normalization that the integral of the right hand side is 1). How to replace
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the first two terms so that the resulting Euler–Lagrange equation comes out right?
This amounts to finding a functional whose differential is exactly minus the Monge–
Ampère operator, i.e., the left hand side of (2.3). This is precisely the functional
−L (recall (4.2) and the line following it). Decomposing −L into two terms, one of
which is − 1

V

∫
ϕηn, yields precisely J as the second term! (Incidentally, this also

explains why L, defined in (4.2), is called the Aubin–Mabuchi functional.)
Thus, the Euler–Lagrange equation for the Berger–Moser–Ding energy (or Ding

energy for short) [88]

(5.3) F β(η, ηϕ) =

⎧⎪⎨⎪⎩
J(η, ηϕ)−

1

V

∫
ϕηn − 1

μ
log

1

V

∫
efη−μϕηn, for μ �= 0,

J(η, ηϕ)−
1

V

∫
ϕηn +

1

V

∫
efηηn, for μ = 0,

is precisely (3.7).

5.2. A nonlinear variational problem. This brings us to a second motiva-
tion for J . As we just noticed, −L(ϕ) = J(η, ηϕ) −

∫
ϕηn. Recall that ±L (4.2)

is a distance function for the Mabuchi metric. Thus, it is tempting to think of J
as a sort of approximate distance function. This is of course not quite true, since
the submanifold {ϕ ∈ He

ω :
∫
ϕηn = 0} of He

ω is not totally geodesic. But ignoring
this subtlety, one is then tempted to think of J as a good way to define coercivity
for our nonlinear problem on He

ω; of course this temptation also arises from the
first motivation discussed earlier. Following Tian [244], one says a functional E
on Hω ×Hω is proper provided that it dominates J (or, by their equivalence, I or
I − J) on each Hω slice. This is an analogue of the standard assumption in the
direct method in the calculus of variations, namely that sublevel sets (of E) are
compact. In particular, if E is proper, a sublevel set of E is contained in some
sublevel set of J . Theorem 4.13 can be recast as a nonlinear analogue of the fun-
damental theorem of the direct method (cf. [232, Theorem 1.1]) in this setting,
justifying the definition of properness.

Theorem 5.1. Suppose that F β(ω, · ) is proper on He
ω. Then it is bounded

from below, and its infimum is attained at a solution of ( 2.3).

For the proof we refer to [141, Theorem 2] (that proof assumes that the

Mabuchi functional Eβ
0 is proper, however the arguments are identical; a concep-

tual proof of the equivalence coercivity of F β and that of Eβ
0 is given in Theorem

5.11 (ii), although a direct proof (i.e., one that does not use the existence of a min-
imizer) of equivalence of the properness of these functionals seems to be unknown).
The special case when β = 1 goes back to Ding–Tian [90] and Tian [244] (see also
[248, §2.2] for a generalization that allows for automorphisms). On the other hand,
Berman showed that under the assumption in the theorem the infimum is attained
within the larger set PSH(M,ω)∩C0(M), and while it is easy to see that the mini-
mizer is contained in C∞(M \D) by local ellipticity and the usual arguments as in
the smooth case, the proof that the minimizer lies in Hε

ω [141] relies on the Ricci
continuity method, as described in §6–7.
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5.3. The staircase energies and Kähler–Ricci energies. A generalization
of the Aubin energy J (5.1) was introduced in [213, (6)],

(5.4) Ik(ω, ωϕ) =
V −1

k + 1

∫
M

ϕ(kωn −
k∑

l=1

ωn−l ∧ ωϕ
l).

Note that In = J, In−1 = ((n+ 1)J − I)/n. These functionals are nonnegative (see
(5.5) below) and are related to, but different from, functionals defined by Chen–Tian
[67]—see [216, p. 133]. The functionals Ik can be thought of as gradual nonlinear
generalizations of the Dirichlet energy that interpolate between the latter and J .
In fact, I1 is simply a multiple of the Dirichlet energy

∫ √
−1∂ϕ ∧ ∂̄ϕ ∧ ωn−1, and

increasing k is analogous to climbing a staircase (see [216, p. 132] for a picto-
rial description) where Ik incorporates one additional ‘mixed’ term proportional to∫ √

−1∂ϕ ∧ ∂̄ϕ ∧ ωn−k ∧ ωϕ
k−1; indeed, by integrating by parts,

(5.5) Ik(ω, ωϕ) =
1

V

∫
M

√
−1∂ϕ ∧ ∂̄ϕ ∧

k−1∑
l=0

k − l

k + 1
ωn−1−l ∧ ωϕ

l.

The definition (5.4) certainly makes sense for pairs of smooth Kähler forms,
and by Theorem 3.10 (i) and the continuity of the mixed Monge–Ampère operators
on PSH(M,ω0) ∩ C0(M) [16, Proposition 2.3], these functionals can be uniquely
extended to pairs (ωϕ1

, ωϕ2
), with ϕ1, ϕ2 ∈ He

ω with ω the reference edge metric
as in (3.5). Thus, these functionals are well-defined on He

ω ×He
ω. Moreover, (5.5)

is still justified for edge metrics: working on a tubular neighborhood of D the
boundary term one obtains from integrating by part in (5.4) tends to zero with the
radius of the neighborhood about D.

As we just saw, the functionals Ik are a natural generalization of the Dirichlet
energy on the one hand, and Aubin’s J functional on the other. It turns out that
Ik play a role in describing a scale of energy functionals Ek that similarly depend
gradually on additional ‘mixed terms’ as k increases, loosely speaking. This can
be made precise using the language of Bott–Chern forms that we review in §5.4.
Another, more down to earth way, of defining this functional is as follows.

Denote the normalized elementary symmetric polynomials of the eigenvalues of
the twisted Ricci form Ric η − (1− β)[D] (with respect to η) by

σβ
k (η) =

(Ric η − (1− β)[D])k ∧ ηn−k

ηn
, k = 1, . . . , n,

and their average (which is independent of the representative of [η]) over (M,ωn)
by

(5.6) μβ
k :=

(c1 − (1− β)c1(LD))k ∪ [η]n−k([M ])

[η]n([M ])
.

When k = 1, σβ
1 (η) = sη/n = trη(Ric η − (1 − β)[D])/n, where sβ(η) denotes the

twisted scalar curvature of η. When k = n this is detη(Ric η − (1 − β)[D]), the
determinant of the twisted Ricci curvature with respect to the metric.

A straightforward generalization of a theorem of the author from the case β = 1
[213, Proposition 2.6] yields the following.
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SMOOTH AND SINGULAR KÄHLER–EINSTEIN METRICS 83

Proposition 5.2. Let k ∈ {0, . . . , n}. Suppose μ
2π [η] = c1 − (1 − β)c1(LD).

The 1-form

η �→
[
Δησ

β
k (η)−

n− k

k + 1

(
σβ
k+1(η)− μβ

k+1

)]
ηn

is exact. Its potential, considered as a function on He
η ×He

η, is given by

(5.7)
μ−kEβ

k (η, ηϕ) = Eβ
0 (η, ηϕ) + μIk(ηϕ, μ

−1Ric ηϕ − μ−1(1− β)[D])

− μIk(η, μ
−1Ric η − μ−1(1− β)[D]),

uniquely determined by the normalization Eβ
k (η, η) = 0.

Proof. As remarked earlier, Ik is continuous in the topology of uniform con-
vergence (on the level of Kähler potentials) by a result of Bedford–Taylor. By defi-
nition (see the second part of Definition 3.2, (3.20), and (3.17)), Ricωϕ− (1−β)[D]
admits a continuous Kähler potential with respect to ω, and moreover this potential
can be suitably uniformly approximated. Smoothly approximate (ω, ωϕ) uniformly
while approximating Ricωϕ− (1−β)[D] uniformly on the level of potentials. Thus,
it suffices to verify the proposition when the Kähler forms are smooth, when inte-
gration by parts, precisely those in the proof in the smooth case [213], are justified.
But then the proof in the smooth case can be applied verbatim, with the definition
of the twisted Ricci potential as in (3.9) (recall fω is continuous for all β) making
the proof consistent with the introduction of the terms (1−β)[D] in the right hand
side of (5.7). �

Similar arguments allow to generalize the following formula of Tian [242] from
the smooth case.

Lemma 5.3. Let η, ηϕ ∈ He
ω. One has,

(5.8) Eβ
0 (η, ηϕ) =

1

V

∫
M

log
ηnϕ
ηn

ηnϕ − μ(I − J)(η, ηϕ) +
1

V

∫
M

fη(η
n − ηnϕ).

The functionals E0 and En were introduced by Mabuchi [167] and Bando–
Mabuchi [14], while the remaining ones by Chen–Tian [67]. Formula (5.7) shows
that the Ek interpolate between E0 and En, to wit [213, (17)]

Eβ
0 (η, ηϕ) = ((1− l

k+1 )E0 +
l

k+1En)(η, ηϕ)

+ (Ik − l
k+1J)(ηϕ, μ

−1Ric ηϕ − (1− β)[D]/μ)

− (Ik − l
k+1J)(η,Ric η), ∀ l ∈ {0, . . . , k + 1}.

Since E0 is known as the K-energy or Kähler energy, and En as the Ricci energy,
it is natural, following [213], to refer to Ek as the Kähler–Ricci energies.

The Ricci energy is special. It lends a geometric interpretation to the Ding
functional, via the inverse Ricci operator, in the sense of [214, §9]. That is, suppose
that (3.12) holds with μ = 1. Define by Ric−1

β : Hε
ω → Hε

ω the twisted inverse Ricci

operator, by letting Ric−1
β η := χ be the unique Kähler form cohomologous to η

satisfying Ricχ − (1 − β)[D] = η. Such a unique form exists by Conjecture 4.2,
since this equation can be written as a Monge–Ampère equation of identical form
to that of the equation for a Ricci flat Kähler edge metric.

Proposition 5.4. One has (Ric−1
β )�Eβ

n = F β.

Again, the proof is a simple adaptation of the proof in the smooth case [214,
Proposition 10.4], following the arguments in the proof of Proposition 5.2 above.
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5.4. Bott–Chern forms. In this subsection we will describe the theory of
Bott–Chern forms and energy functionals, inspired by work of Bott and Chern [37],
and developed by Donaldson and Bismut–Gillet–Soulé [29,92]. This will be applied

to showing that the functionals Eβ
k have an expression in terms of Bott–Chern

forms, slightly generalizing but very closely following the discussion in [216, §4.4.5].
The main idea of Bott–Chern forms is that given a moduli space of Hermitian

metrics on a bundle one may construct canonically defined “universal” functions on
the moduli space associated to curvature. These functions arise via a “potential”
for the curvature form of a “universal” bundle over the whole moduli space.

Let E → M be a holomorphic vector bundle of rank r.2 A vector bundle rep-
resents a Čech cohomology class in H1(M,OM (GL(r,C))). Here by OM (GL(r,C))
we mean the sheaf of germs of holomorphic functions to GL(r,C). When r = 1
it is denoted by O�

M . Let us identify E with its Čech class representative, i.e.,
by a collection of transition functions g = {gαβ} that are holomorphic maps from
the intersection of any two coordinate neighborhoods Uα, Uβ ⊂ M to GL(r,C),

gαβ : Uα ∩ Uβ → GL(r,C), satisfying the Čech cocycle conditions [124, p. 66]

(δg)αβγ := gαβ · gβγ · gγα = I.

Note that here the groups comprising the sheaf have a multiplicative structure (and
not an additive one) and hence δg = I expresses closedness, i.e., [g] represents a
Čech cohomology class.

Denote by HE the space of all Hermitian metrics on E. Let Herm(r) denote
the space of positive Hermitian r× r matrices. Any Hermitian metric H ∈ HE can
be represented by smooth maps Hα : Uα → Herm(r) such that with respect to local

bases of sections one has (Hα)ij̄ = (gαβ)ik(Hβ)kl̄(gαβ)jl, or simplyHα = g�αβHβgαβ .

This is summarized in the notation H = {Hα}.
To every H ∈ HE there is associated a unique complex connection DH . For a

general holomorphic vector bundle the connection DH is a 1-form on M with values
in the bundle End(E) of endomorphisms of E. One may write globally

DH = H−1 ◦ ∂ ◦H.

The derivation of this formula follows the same argument as in the line bundle case.
The exact meaning of how to understand this and other similar expressions involving
compositions of endomorphisms and differential operators will be explained in detail
below in several computations. With respect to a local holomorphic frame e1, . . . , er
over Uα ⊂M the endomorphism H may be represented by a matrix and one has the
special expression (DH |Uα

)ij = ∂hjl̄ · hl̄i. This expression is not valid with respect
to an arbitrary frame.

The global expression for the curvature is then

(5.9) FH := DH ◦DH = ∂̄ ◦H−1 ◦ ∂ ◦H.

Implicit in this notation as well as in the sequel is the convention of working
with endomorphisms with values in the exterior algebra of differential forms on
M . Locally with respect to a holomorphic frame one has the special expression
FH |Uα

= ∂̄(∂hjl̄·hl̄i). This expression is not valid with respect to an arbitrary frame.

2For the general discussion of Bott–Chern forms we will only make use of the fact that M
is complex (rather than Kähler). In our applications we will always work with line bundles, i.e.,
r = 1. If one were interested only in that case the discussion below could be slightly simplified.
However we have chosen to maintain this level of generality.
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However it demonstrates that FH is (1, 1)-form onM (with values in End(E)), since
the type is independent of the choice of frame.

Let φ denote an elementary symmetric polynomial on gl(r,C) × · · · × gl(r,C)
(p times) that is invariant under the adjoint action of GL(r,C) (conjugation). The
idea behind Chern classes is that one may plug into such polynomials matrices that
have differential forms as their entries, for example FH . Since the polynomials are
GL(r,C)-invariant one obtains a differential form that is invariant under a change
of local trivializations for the bundle, hence is intrinsically defined. Moreover it
turns out that such forms are closed, hence define intrinsic cohomology classes that
depend only on the complex structure of E →M .

Now we come back to our original task of constructing functions on HE . One
may show that φ(FH) := φ(FH , . . . , FH) is a closed 2p-form. It certainly depends
on the metric H, however its cohomology class in H2p(M,Z) does not. This means
that the difference

φ(FH0
)− φ(FH1

)

is exact. Moreover, and here we arrive at the main point of Bott–Chern theory,
one may find a (p−1, p−1)-form BC(φ;H0, H1), well-defined up to ∂- and ∂̄-exact
forms, such that

∂̄∂BC(φ;H0, H1) = φ(FH1
)− φ(FH0

).

The form BC(φ;H0, H1) may then be integrated against a (n− p+ 1, n− p + 1)-
form on M to give a number. Fixing H0 and letting H1 vary we therefore obtain a
function on HE as desired. And, if p−1 = n, we even do not need to make a choice
of such a form in order to integrate (this will be the case in our applications). We
now show how to construct the Bott–Chern form BC(φ;H0, H1). The proof below
is a slow pitch version of the orignal one.

Proposition 5.5. (See [92, Proposition 6].) Let φ be a GL(r,C)-invariant
elementary symmetric polynomial. Given H0, H1 ∈ HE and any path {Ht}t∈[0,1] in
HE connecting them, the (p− 1, p− 1)-form
(5.10)

BC(φ;H0, H1) := p(
√
−1)p−1

∫
[0,1]

φ(H−1
t Ḣt, FHt

, . . . , FHt
)dt mod Im∂ + Im∂̄,

is well-defined, namely does not depend on the choice of path. In addition,

(5.11) BC(φ;H0, H1) +BC(φ;H1, H2) +BC(φ;H2, H0) = 0,

and

(5.12) ∂̄∂BC(φ;H0, H1) = φ(FH1
)− φ(FH0

).

Notice that the first argument of φ is an endomorphism while the rest of its
arguments are endomorphism-valued 2-forms.

Proof. Note that BC(φ;H0, H1) is given by integration over a path connect-
ing H0 and H1 of a globally defined 1-form on HE with values in (p−1, p−1)-forms
on M . We call this form θ. To show independence of path we show that this form
is closed modulo ∂- and ∂̄-exact terms. Let H ∈ HE . Let h, k ∈ THHE and extend
them to constant vector fields near H. Then,

(5.13) dθ(h, k) = k θ|H(h)− h θ|H(k).
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First we obtain an expression for the infinitesimal change of the curvature
under a variation of a Hermitian metric. Write H + tk = H ◦ (I+ tH−1k) =: H ◦ f .
We write ◦ to emphasize that composition of endomorphisms is taking place (in
coordinates: multiplication of matrices). According to (5.9) we have

(5.14)

FH◦f = ∂̄
(
(H ◦ f)−1 ◦ ∂(H ◦ f)

)
= ∂̄

(
f−1 ◦ (H−1 ◦ ∂H) ◦ f + f−1 ◦ ∂f

)
= ∂̄ ◦ f−1 ◦D1,0

H ◦ f.

Here it should be emphasized that DH decomposes according to type (of its 1-form

part) into D1,0
H and D0,1

H and, that while originally the connection DH was defined
on E, it may be extended naturally to End(E) and it is this extension that we use
in the equation above (f is a section of End(E) and not of E). The same applies
to the operator ∂̄ that we also extend to act on End(E). To understand the last
equation better, we let the endomorphism it defines act on a holomorphic section
s of E, and compute:

FH◦fs = ∂̄ ◦ f−1 ◦D1,0
H (fs)

= ∂̄ ◦ f−1 ◦
(
(D1,0

H f)s+ fD1,0
H s

)
=

(
∂̄
(
f−1(D1,0

H f)
)
+ ∂̄ ◦D1,0

H

)
s.

Therefore we write

FH◦f = FH + ∂̄
(
f−1(D1,0

H f)
)
,

and the second term should be understood to be distinct from (5.14). This subtle
notational issue can be a cause for great confusion when consulting the literature
on vector bundles and Yang-Mills theory. Putting now f = I + tH−1k we obtain

FH+tk = FH + t∂̄
(
D1,0

H (H−1k)
)
+O(t2).

Hence the first term in (5.13) is given by
(5.15)

1

p(
√
−1)p−1

kθ|H(h) =
d

dt

∣∣∣
0
φ((H + tk)−1h, FH+tk, . . . , FH+tk)

= φ(−
√
−1Hk

√
−1Hh,FH , . . . , FH)

+
∑

φ(
√
−1Hh,FH , . . . , ∂̄D1,0

H (
√
−1Hk), . . . , FH).

Therefore one has, putting σ =
√
−1Hh, τ =

√
−1Hk,

(5.16)
1

p(
√
−1)p−1

dθ(h, k) = φ([σ, τ ], FH , . . . , FH) +
∑

φ(σ, FH , . . . , ∂̄D1,0
H τ, . . . , FH)

−
∑

φ(τ, FH , . . . , ∂̄D1,0
H σ, . . . , FH).

σ and τ are sections of the endomorphism bundle of E. Note that as operators on
this bundle one has

∂̄ ◦D1,0
H +D1,0

H ◦ ∂̄ = (∂̄ +D1,0
H ) ◦ (∂̄ +D1,0

H ) = D2
H = FH ,

since we already saw that the curvature is of type (1, 1). Hence for example

(5.17) ∂̄ ◦D1,0
H σ = −D1,0

H ◦ ∂̄σ + [FH , σ].
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Note [FH , σ] ≡ FHσ, and the bracket notation simply emphasizes that we have
extended FH to act on the endomorphism bundle and so the endomorphism part
of FH will actually act by bracket on the endomorphism σ (the 2-form part will

simply be multiplied along). By the Bianchi identity DHFH = 0 and so D1,0
H FH =

0, ∂̄FH = 0. Now,

(5.18)

φ(σ, ∂̄D1,0
H τ, FH , . . . , FH) = ∂̄φ(σ,D1,0

H τ, FH , . . . , FH)

− φ(∂̄σ,D1,0
H τ, FH , . . . , FH)

−
∑

φ(σ,D1,0
H τ, FH , . . . , ∂̄FH , . . . , FH)

= ∂̄φ(σ,D1,0
H τ, FH , . . . , FH)

− φ(∂̄σ,D1,0
H τ, FH , . . . , FH).

Using (5.17) the corresponding term in the second sum of (5.16) is
(5.19)

−φ(τ, ∂̄D1,0
H σ, FH , . . . , FH) = −φ(τ,−D1,0

H ∂̄σ + [FH , σ], FH , . . . , FH)

= −φ(τ, [FH , σ], FH , . . . , FH) + ∂φ(τ, ∂̄σ, FH , . . . , FH)

− φ(D1,0
H τ, ∂̄σ, FH , . . . , FH)

−
∑

φ(τ, ∂̄σ, FH , . . . , D1,0
H FH , . . . , FH).

= φ(τ, [σ, FH ], FH , . . . , FH) + ∂φ(τ, ∂̄σ, FH , . . . , FH)

− φ(D1,0
H τ, ∂̄σ, FH , . . . , FH).

Note that it is not necessarily true that

(5.20) −φ(D1,0
H τ, ∂̄σ, FH , . . . , FH)

cancels with

−φ(∂̄σ,D1,0
H τ, FH , . . . , FH).

But, eventually taking the equations (5.18) and (5.19) for all pairs appearing in the
sums (5.16) then, e.g., the term (5.20) will cancel with the term

−φ(∂̄σ, FH , . . . , FH , D1,0
H τ ).

Indeed we are only allowed to permute the arguments of φ cyclically (e.g., for three
matrices A,B,C one has tr(ABC) = tr(CAB), but in general tr(ABC) is different
from tr(BAC)). Note also that while φ does not change when permuting matrices
cyclically, when we permute cyclically matrix valued 1-forms a sign appears, as
usual. This explains the cancellation above.

Hence, modulo ∂- and ∂̄-exact terms, we are left with∑
φ(τ, FH , . . . , [σ, FH ], FH , . . . , FH)

which cancels with the first term in (5.16); this can be seen by using the invariance
of φ under the action of GL(r,C) by conjugation

d

dt

∣∣∣
0
φ(e−tBA1e

tB , . . . , e−tBApe
tB) =

∑
φ(A1, . . . , [Aj , B], . . . , Ap),

concluding the proof. �
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Example 5.6. Let E denote an ample line bundle polarizing a Kähler class
Ω = c1(E). We identify HE with Hω where ω = −

√
−1∂∂̄ log h =

√
−1∂̄(h−1∂h) =√

−1Fh is a Kähler form with h ∈ HE (and hence [ω] = Ω). Now r = 1 and so no
traces are needed (the matrices are all one-dimensional). Put

(5.21) φ(A1, . . . , An+1) := A1 · · ·An+1.

Take a path of Hermitian metrics ht = e−ϕth. Then Fht
= Fh + ∂∂̄ϕt = ωϕt

/
√
−1.

Then the Bott–Chern form is
(5.22)

BC(φ;h0, h1) = (n+1)

∫ 1

0

(
√
−1)nφ(−ϕ̇t, Fht

, . . . , Fht
)dt = −(n+1)

∫ 1

0

ϕ̇t ω
n
ϕt
∧dt.

This expresses a 2n-form on M . Integrating this over M gives the function −(n+
1)L(ϕ), onHω. By 5.5 this is independent of the choice of path since any two choices
differ by ∂- and ∂̄-exact terms and hence by d-exact terms since our expressions are
real.

Now we turn to the setting of a Kähler manifold with an integral Kähler class
[ω]. Let L be a line bundle polarizing the Kähler class, namely c1(L) = [ω]. Let
K−1

M denote the anticanonical bundle polarizing the class c1, and LD the line bundle
associated toD. Given a Hermitian metric h on L of positive curvature, and a global
holomorphic section s of LD one obtains a metric detFh|s|2−2β = det(ω/

√
−1) on

K−1
M ⊗Lβ−1

D (we mean that locally detFh = det(gij̄) if ω =
√
−1gij̄dzi∧dzj) where

ω = −
√
−1∂∂̄ log h. We write h ∈ Hω =: H+

L . Note that the Bott–Chern forms

defined below are defined on H+
L rather than on all of HL (or to be more precise

on a set isomorphic to H+
L , see [245, p. 214]).

The main result of this subsection is the following expression for the Kähler–
Ricci functionals in terms of Bott–Chern forms. While this generalizes a theorem of
Tian for the K-energy (the case k = 0) [245, §2] and its extension by the author to
all k [216, §4.4.5], the computations are almost identical. In essence, the (twisted)
Kähler–Ricci functionals are realized as a linear combination of Bott–Chern forms,

one for each of the R-line bundles Ej = K−1
M ⊗Lβ−1

D ⊗Ln−2j for j = 0, . . . , n. One
of these terms (the simplest contribution) is a multiple of the form appearing in
Example 5.6.

Theorem 5.7. Let k ∈ {0, . . . , n} and let φ be defined by (5.21). Let (M,J, ω)
be a projective Kähler manifold, and let L be a line bundle with c1(L) = [ω]. Let

μβ
k be given by (5.6). For each k ∈ {0, . . . , n},

(5.23)[
Δωσ

β
k −

n− k

k + 1

(
σβ
k+1 − μβ

k+1

)]
ωn =

2−n

(n+ 1)!

(
n

k

)−1
1

V

n∑
j=0

(−1)j
(
n

j

)
(n− 2j)k BC(φ;hn−2j

0 detFh0
|s|2−2β ,

hn−2j
1 detFh1

|s|2−2β)

− 1

V

μβ
k+1

n+ 1

n− k

k + 1
BC(φ;h0, h1).
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Proof. The proof in the case β = 1 is given in [216, Proposition 4.22]. The
general case follows from the same computations by subtracting the fixed current
(1− β)[D] from each Ricci current that appears in the computation. �

Remark that from the proof it follows that similar “twisted” functionals can
thus be defined by replacing (1− β)[D] with some other fixed curvature current of
a line bundle.

Remark 5.8. Tian [242, p. 255–257] gave an interpretation of the “complex
Hessian” of the K-energy E0 in terms of a certain “universal” Hermitian metric h
(see the references above for the notation and definitions):

(5.24) −
√
−1∂∂̄E0 =

1

V

∫
M

(
√
−1)n+1

(
FdetFh

− nμ0

n+ 1
Fh

)
∧ (Fh)

n.

We note in passing the following generalization of this formula to the Kähler–Ricci
functionals
(5.25)

−
√
−1∂∂̄Ek =

1

V

∫
M

(
√
−1)n+1

(
(FdetFh

)k+1− (n− k)μk

(k + 1)(n+ 1)
(Fh)

k+1
)
∧ (Fh)

n−k.

We also remark that using the techniques of [213] one may generalize appropriately

Theorem 5.1 in terms of properness of the functional Eβ
k on the space of Kähler

forms η for which Ric η − (1 − β)[D] is positive and cohomologous to [η]. Finally,
also L has such a formula due to Tian [245, p. 214],

√
−1∂∂̄L =

1

V

∫
M

(
√
−1Fh)

n+1,

that has been extended by Berman–Boucksom [21, (4.1)] to Kähler potentials with
low regularity, and can be used to characterize weak geodesics in the Mabuchi
metric.

5.5. Legendre transform. In this section we restrict to the case μ > 0 to
simplify the notation, and describe work of Berman [18] and Berman–Boucksom

[21] that ties F β with Eβ
0 via the Legendre transform.

Defining the probability measure (recall the normalization (3.9))

(5.26) νη := (Ric−1η)n = efηηn,

we rewrite (5.3) and (5.8) as

(5.27)

F β(η, ηϕ) = −Lη(ϕ)−
1

μ
log

1

V

∫
e−μϕνη,

Eβ
0 (η, ηϕ) =

1

V

∫
M

log
ηnϕ
νη

ηnϕ − μ(I − J)(η, ηϕ) +
1

V

∫
M

fηη
n.

The last term in Eβ
0 is a constant. It can be eliminated if we had normalized∫

M
fηη

n = 0, and then set νη := efηηn

1
V

∫
efηηn . The first term in Eβ

0 is the entropy of

ηnϕ relative to the measure νη considered as a functional on the space of measures,

(5.28) Ent(ν, χ) =
1

V

∫
M

log
χ

ν
χ,
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which, in terms of the density d = χ/ν, takes the familiar form for the entropy∫
d log d ν. On the other hand, it is classical that the last term in F β is precisely

the Legendre transform of the entropy, in the sense that [85, p. 264],
(5.29)

Λν(−μϕ) = log
1

V

∫
e−μϕν = Ent(ν, · )�(−μϕ) = sup

χ∈VV

{〈−μϕ, χ〉 − Ent(ν, χ)},

where VV = {ν : 0 ≤ ν/ωn ∈ C0(M,ωn),
∫
ν = V }. Conversely, by convexity,

Ent(ν, μ) = sup
ψ∈C0(M)

{〈μ, ψ〉 − log
1

V

∫
eψν} = Λ�

ν(μ).

One of Berman’s insights was that the remaining terms in Eβ
0 and F β are similarly

related by the Legendre transform [18, §2] (cf. [23, Theorem 5.3]).

Lemma 5.9. Let μ > 0. Then, supψ∈PSH(M,ω)∩C0{〈−μψ, ωn
ϕ〉 + μLω(ψ)} =

μ(I − J)(ω, ωϕ).

We could have introduced a minus sign into the usual inner product between
functions and measures in order to obtain that (−L)� = I − J . Instead of doing
that, we kept the usual inner product but then the left hand side in Lemma 5.9 is
not precisely the Legendre transform.

Proof. The proof would be easier if we knew that the supremum over all
functions coincides with that over ω-psh ones. Indeed, in that case, F (ψ) :=
〈−μψ, ωn

ϕ〉+ μLω(ψ) is concave in ψ in the sense that

− d2

dt2

∣∣∣
t=0

F (ψ + tφ) = μ

∫
n
√
−1∂φ ∧ ∂̄φωn

ψ ≥ 0

(recall that dLω|ψ = ωn
ψ). Differentiating, one sees a critical point ψ, necessarily

a maximum, must satisfy ωn
ψ = ωn

ϕ (here we are being a bit loose since C0(M) is
infinite-dimensional; however the same reasoning as for the Legendre transform in
finite-dimensions applies), hence by uniqueness ϕ = ψ + C [31]. Plugging back in,
and using the formula L(ϕ) = (I − J)(ω, ωϕ) +

1
V

∫
ϕωn

ϕ then yields the statement.

To make the reduction to the subset PSH(M,ω)∩C0(M) ⊂ C0(M), recall the
definition of the ω-psh envelope operator Pω : ϕ �→ sup{φ ∈ PSH(M,ω)∩C0(M) :
φ ≤ ϕ}. By a result of Berman–Boucksom [21], Lω ◦ Pω is concave on C0(M),
Gateaux differentiable, and dLω ◦ Pω|ϕ = ωn

Pωϕ. Thus, supψ∈C0{〈−ψ, ωn
ϕ〉 + Lω ◦

Pω(ψ)} = (I − J)(ω, ωPϕ). This concludes the proof, since Pϕ ≤ ϕ and so the
supremum must actually be attained at ϕ ∈ PSH(M,ω), as Lu ≤ Lv if u ≤ v ≤ 0,
and we can normalize ψ so that supψ = 0. �

Remark 5.10. As pointed out by Berman, one can, in fact, avoid using the
result of Berman–Boucksom to prove the preceeding Lemma, since simpler convex-
ity arguments already show that the supremum must be attained at ϕ. However,
that result is useful to show that a maximizer ψ must satisfy ωn

ψ = ωn
ϕ (and hence

ψ ∈ L∞ [149] and so equal to ϕ up to a constant [31]). In addition, the result
of Berman–Boucksom is essentially needed if one replaces ωn

ϕ by a more general
measure or even volume form ν; the result can be seen as the starting point of the
variational approach to constructing a weak solution of the equation ωn

ϕ = ν.
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5.6. Equivalence of functionals. Motivated by variational calculus, one ex-
pects that the KEE problem is solvable if and only if it can be cast as a variational
problem with a coercive functional. One calls E coercive if there exist uniform pos-
itive constants A,B such that the c-sublevel set of E is contained in the A(c+B)-
sublevel set of J , i.e., E ≥ 1

AJ −B. In particular, E is then proper, thus bounded
from below. We have seen a number of functionals that have KEE metrics as criti-
cal points. The following basic result says that they are all more or less equivalent
as far as boundedness, coercivity, and existence of KEE metrics is concerned. To
state it we introduce some notation. Suppose that μ > 0, and define

(5.30) He,+
ω = {ϕ ∈ He

ω : Ric ωϕ − (1− β)[D] is a positive current}.

This space is nonempty as a corollary of the existence theorem for the case μ = 0.
Let l(ω) = infϕ∈He

ω
F β(ω, ωϕ) and

lk(ω) =

{
infϕ∈He

ω
Ek(ω, ωϕ), for k = 0, 1,

infϕ∈He,+
ω

Ek(ω, ωϕ), for k = 2, . . . , n.

Theorem 5.11. Let μ > 0. (i) The lower bounds of Eβ
k and that of F β are

related by

(5.31) μl(ω)+
1

V

∫
fωω

n = l0(ω) = μ−klk(ω)−μIk(ω, μ
−1Ricω−μ−1(1−β)[D]).

In particular, F β, Eβ
0 and Eβ

1 are simultaneously bounded or unbounded from below
on He

ω.

(ii) The coercivity of Eβ
0 is equivalent to that of F β.

Proof. (i) First, by Proposition 5.2 and the fact that Ik is nonnegative on

He
ω × He

ω, it follows that if Eβ
0 is bounded below on He

ω then Eβ
k , k = 1 . . . n is

bounded below on He,+
ω . In particular, this is true for Eβ

n , but then, by Proposition
(5.4) and the edge version of the Calabi–Yau theorem (Conjecture 4.2, that guar-
antees that Ric−1

β : He
ω → He,+

ω is an isomorphism) it follows that F β is bounded

below on He
ω ×He

ω. But, by a formula of Ding–Tian [90]

(5.32) (Eβ
0 − μF β)(ω, ωϕ) =

1

V

∫
fωω

n − fωϕ
ωn
ϕ ≥

∫
fωω

n,

where we used the normalization (3.9) and Jensen’s inequality

1

V

∫
fωϕ

ωn
ϕ ≤ log

1

V

∫
efωϕωn

ϕ = 0.

This proves (i), since the precise lower bounds (5.31) can be deduced from the proof
and a theorem of Ding–Tian—see [213, Remark 4.5].

We now give a second derivation, due to Berman, of a special case of (i),

namely, the equivalence of the lower bounds of F β and Eβ
0 . First, F

β(ω, · ) ≥ −C,
is equivalent to −μLω ≥ log 1

V

∫
e−μϕν − μC. The Legendre transform, in the

sense of the previous subsection, is order-reversing. Thus, according to (5.29) and

Lemma 5.9, μ(I − J)(ω, ωϕ) ≤ Ent(ν, ωn
ϕ) + μC i.e., Eβ

0 (ω, · ) ≥ 1
V

∫
fωω

n − μC.
This concludes this derivation since the Legendre transform is an involution.

(ii) Suppose that Eβ
0 is coercive. Then, by definition, Eβ

0 − ε(I−J) is bounded
from below. It follows from (i) that so is F β , but now with μ replaced by μ+ ε, in
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other words

−Lω(ϕ) ≥
1

μ+ ε
log

1

V

∫
e−(μ+ε)ϕν − C,

for all ϕ ∈ PSH(M,ω) ∩ C0. Normalize ϕ so that
∫
ϕωn = 0, and substitute

μ
μ+εϕ ∈ PSH(M,ω) in this inequality to obtain

J(ω, ωμϕ/(μ+ε)) = −Lω

( μ

μ+ ε
ϕ
)
≥ 1

μ+ ε
log

1

V

∫
e−μϕν − C,

so
1

μ
log

1

V

∫
e−μϕν − C ′ ≤ μ+ ε

μ
J(ω, ωμϕ/(μ+ε))

≤
( μ

μ+ ε

)1/n

J(ω, ωϕ) =: −(1− ε′)L(ω, ωϕ),

where the last inequality is due to Ding [88, Remark 2]. Thus, F β ≥ ε′J −C ′. The
converse follows from (5.32). �

Remark 5.12. Part (i) and its proof above is due to [213]. The special case of

the equivalence of F β and Eβ
0 being bounded below was obtained independently by

H. Li [159] using results of Perelman [222] on the Ricci flow, and a third proof was
later given by Berman [18] using the Legendre transform, as presented above. Part
(ii) is a special case of a result of Berman (which allows to replace ν by a rather
general probability measure), which generalized a result of Tian and its subsequent
refinement by Phong et al. (in the smooth case) [202,244,246]. For a comparison
of properness and coercivity in the KE setting we refer to [248, §2].

6. The Ricci continuity method

This section describes a new input that goes into the proof of Conjecture 4.2
and Theorem 4.13 in §4.5. It is a new continuity method that is essentially the
only one that can be used to prove existence of KEE metrics, since the classical
continuity methods that were previously used to construct KE metrics break down
when β belongs to the more challenging regime (1/2, 1) where, among other things,
the curvature of the reference geometry is no longer bounded (Lemma 3.14). We
describe all of this in detail in §6.1–§6.4. Subsection 6.5 is an interlude about the
Ricci iteration that origingally motivated the Ricci continuity method. Finally, §6.6
describes other approaches to existence.

6.1. Ricci flow meets the continuity method. The Ricci continuity method
was introduced in [214] and was further developed and first used systematically to
construct KE(E) metrics in [141,175]. The idea is to prove existence of a continu-
ity path, or, in other words, a one-parameter family of Monge–Ampère equations
and solutions thereto, in a canonical geometric manner. To that end, we start with
the Ricci flow

(6.1)
∂ω(t)

∂t
= −Ric ω(t) + (1− β)[D] + μω(t), ω(0) = ω ∈ H,

Fix τ ∈ (0,∞). The (time τ ) Ricci iteration is the sequence {ωkτ}k∈N ⊂ Hω,
satisfying the equations

ωkτ = ω(k−1)τ + τμωkτ − τRicωkτ + τ (1− β)[D], ω0τ = ω,
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for each k ∈ N for which a solution exists in Hω. This is the backwards Euler
discretization of the flow (4.5) [214]. Equivalently, let ωkτ = ωψkτ

, with ψkτ =∑k
l=1 ϕlτ . Then,

(6.2) ωn
ψkτ

= ωnefω−μψkτ+
1
τ ϕkτ .

We now change slightly our point of view by fixing k = 1 but instead varying τ in
(0,∞). This yields ωn

ϕτ
= ωnefω+( 1

τ −μ)ϕτ , and setting s := μ− 1
τ , we obtain

(6.3) ωn
ϕ = ωnefω−sϕ, s ∈ (−∞, μ],

where ϕ(−∞) = 0, and ωϕ(−∞) = ω. We call this the Ricci continuity path (Ricci
CP).

Aside from the formal derivation that relates (6.3) to the Ricci flow, it turns
out that the two equations share several key analytic and geometric properties:
(i) Short-time existence: the Ricci CP exists for all 0 < τ << 1, i.e., for all
s << −1.
(ii) Monotonicity: Ė0(ω(0), ωϕs

) ≤ 0 with equality iff ω(0) is KEE.
Moreover, the Ricci CP inherits one additional property that is not satisfied by the
Ricci flow, and which provides an important advantage:
(iii) Ricci lower bound: Along the Ricci CP Ric ωϕ(s) > sωϕ(s). Moreover, this
holds even if the initial metric has unbounded Ricci curvature! Note that properties
(i) and (iii) were first noticed by Wu and Tian–Yau, respectively, in their study of
non-compact KE metrics with negative Ricci curvature [252,265], while (ii) goes
back to [14].

In the rest of this section we will explain how to obtain a unified proof of
existence of both smooth and edge KE metrics (the proof of Conjecture 4.2 and
Theorem 4.13) using the Ricci CP. In §6.6 we also review other approaches to
existence. But first, we make a comparison to some other CPs and explain where
each of them would break down in the edge setting.

6.2. Other continuity methods. The continuity path (6.3) has several use-
ful properties, some already noted above, which are necessary for the proof of Con-
jecture 4.2 and Theorem 4.13 when β > 1/2. In other words, one could use various
CPs (including the Ricci CP) when β is in the “orbifold regime” β ∈ (0, 1/2], but
it seems that the CPs we discuss below break down in the regime β ∈ (1/2, 1). To
illustrate this, we now describe these CPs and where they fail.

When μ ≤ 0, Calabi suggested the following path [46, (11)] that was later used
by Aubin and Yau [8,268]

(6.4) ωn
ϕt

= ωnetfω+ct−μϕt , t ∈ [0, 1].

In the case μ > 0, Aubin suggested the following extension of Calabi’s path [9]

(6.5) ωn
ϕt

=

{
ωnetfω+ct , t ∈ [0, 1],

ωnefω−(t−1)ϕt , t ∈ [1, 1 + μ].

Still when μ > 0, an alternative path was considered by Demailly and Kollár
[84, (6.2.3)], given by

(6.6) ωn
ϕt

= ωnet(fω/μ−ϕt), t ∈ [0, μ].
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(6.3)

(6.4)

(6.5)

(6.6)

−∞
s

0 μ

t

0

1

Figure 6. Continuity paths of the form (6.7) with (s, t) ∈ A (as-
suming μ > 0). The Ricci continuity path is (6.3).

All of these paths, as well as the Ricci CP, correspond to different curves within
the two-parameter family of equations

(6.7) ωn
ϕ = etfω+ct−sϕωn, ct := − log

1

V

∫
M

etfωωn, (s, t) ∈ A,

where A := (−∞, 0]× [0, 1] ∪ [0, μ]× {1} (see Figure 6).
In the smooth setting, any one of these paths may be used to prove existence

of a KE metric, assuming the K-energy is proper. Note that different paths have
been used to prove existence, depending on μ: (6.4) when μ ≤ 0, and (6.5) or (6.6)
when μ > 0. Below, we will prove existence in a unified manner, i.e., regardless
of the sign of μ or whether β = 1 or β ∈ (0, 1). In fact, we show that when
β ∈ (0, 1/2] ∪ {1} then (6.7) has a solution for each (s, t) ∈ A. On the other hand,
when β ∈ (0, 1/2) the Ricci curvature of the reference metric ω is unbounded from
below as a corollary of Lemma 3.14. Thus, for each (s, t) ∈ A,

Ricωϕ(s,t) = (1− t)Ricω + sωϕ(s,t) + (μt− s)ω + (1− β)[D],

and this has a lower bound only if t = 1. Thus, on the one hand, the Chern–Lu
inequality, which requires such a lower bound is inapplicable; on the other hand, the
Aubin–Yau inequality which requires a lower bound on the bisectional curvature
of the reference geometry is inapplicable once again due to Lemma 3.14. This
reasoning sifts out naturally the Ricci CP among all other possible curves in A.

6.3. Short time existence. Intuitively, the Ricci continuity path (6.3) has
the trivial solution ω(−∞) = ω at s = −∞. Producing solutions for very nega-
tive s can be considered as the continuity method analogue of showing short-time
existence for the Ricci flow. However, it is not possible to apply the implicit func-
tion theorem directly to obtain solutions for large negative finite values of s (this
observation is due to Wu, who noted that the last displayed equation on [252, p.
589] is valid for s0 > 0 but not for s0 = 0). Indeed, reparametrizing (6.3) by set-
ting σ = −1/s, then the linearization of the Monge-Ampère equation at σ equals
σΔϕ(−1/σ) − 1, which degenerates at σ = 0. More concretely, Lσ := σΔϕ(−1/σ) − 1

has bounded operator norm when considered as acting from D0,γ
w to C0,γ

w only when
σ > 0: there is no constant C > 0 such that ||L0v||D0,γ

w
= ||v||D0,γ

w
≤ C||v||C0,γ

w
, of

course.
Thus a different method is needed to produce a solution of (6.3) for sufficiently

negative, but finite, values of s. We present two arguments. The first, described in
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§6.3.1, works only when β ∈ (0, 1/2]∪{1}. Wu’s original argument also only works
when β is in that range; in §6.3.2 we present a generalization of Wu’s argument
that does not require lower curvature bounds on ω and thus is applicable for all
β ∈ (0, 1]. Finally, we remark that an interpretation of the s → −∞ limit in terms
of thermodynamics together with a variational approach has been given by Berman
[20].

6.3.1. The two-parameter family trick. When β ∈ (0, 1/2] ∪ {1}, the difficulty
with applying the implicit function theorem can be circumvented as follows [141].
Indeed, the original continuity path (6.3) embeds into the two-parameter family
(6.7), and it is trivial that solutions exist for the finite parameter values (s, 0).
Thus, while this does not show directly that our original equation has solutions for
all (s, 1) with s sufficiently negative, it yields that result eventually, provided we
have a priori estimates for all values (s, t). This is somewhat reminiscent of adding
variables or symmetries to a given equation in order to solve it.

The reason this trick does not seem to work when β > 1/2 is that it is not clear
how to obtain the a priori estimates needed to carry out the rest of the continuity
argument for the two-parameter family, unless β ∈ (0, 1/2] ∪ {1}. In essence then,
the classical continuity path with parameter values {(−μ, t), t ∈ [0, 1]} may simply

fail to exist within the space of D̃0,γ
s -regular Kähler edge potentials. It would be

interesting to understand the maximal set of values (s, t) for which a solution exists
in (6.7),

(6.8) M := {(s, t) ∈ A : (6.7) admits a solution ϕ(s, t) ∈ PSH(M,ω) ∩ D0,γ
w },

as well as analogues of this set for lower regularity classes.
6.3.2. Newton iteration arguments. Thus, to handle the general case, another

method must be used to obtain a solution of (6.3) for some very negative value of
s. Wu used a Newton iteration argument to obtain such a solution in a different
setting [265, Proposition 7.3]. However, his argument requires a Ricci curvature
bound on the reference metric (see [265, p. 431] where the expression Δωfω, that
on M \ D equals the scalar curvature up to a constant, enters), which we lack.
What follows is an adaptation of Wu’s argument that requires no curvature control
on the reference metric, and thus requires more delicate estimates. We compare
our approach to Wu’s in Remark 6.2.

Define

Nσ : D0,γ
w → C0,γ

w , Nσ(Φ) := log(ωn
σΦ/e

fωωn)− Φ.

This is equivalent to the original Monge–Ampère equation (6.3) upon substituting
σ = −1/s and Φ = −sϕ. Note that DNσ|Φ = σΔσΦ − Id. Now, suppose that
σΦ ∈ Hω, and, say, s < −1. By the maximum principle (adapted to the edge
setting by adding a barrier function, see §6.4), the nullspace of DNσ is trivial
provided s < 0. Thus, Theorem 3.7 (i) implies that DNσ|Φ : D0,γ

w → C0,γ
w is an

isomorphism, with

(6.9) ||u||D0,γ
w

≤ C||DNσu||C0,γ
w

.

Denote by DNσ|−1
Φ the inverse of this map on C0,γ

w .

Proposition 6.1. Define, Φ0 = 0, Φk = (Id−DNσ|−1
Φk−1

◦Nσ)(Φk−1), k ∈ N.

There exists 0 < σ0 � 1 and γ′ > 0, such that if σ ∈ (0, σ0) then σ limk→∞ Φk ∈
D0,γ′

w ∩ PSH(M,ω) solves (6.3) with s = −1/σ.
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The proof appears in [141, §9]. The crucial step is showing that σΦ1 has small

D0,γ′

w norm, and therefore it is still a Kähler edge potential. We now sketch some
of the details.

When k = 1, Nσ(0) = −fω and Φ1 = (σΔω − Id)−1fω. To prove that σΦ1 ∈
Hω, it suffices to show that the pointwise norm |∂∂̄ σΦ1|ω is small, for then ω +√
−1∂∂̄ σΦ > 0. By Theorem 3.7 (i), it is enough to prove that Δω(σΦ1) is small

in C0,γ
w . However, by definition,

σΔωΦ1 = σΔω(σΔω − 1)−1fω = Δω(Δω + s)−1fω.

The difficulty is that fω ∈ C0,γ
w for γ ∈ (0, 1/β − 1), but not higher in the wedge

Hölder scale. To overcome this, we consider f as varying over a range of function
spaces (some of which fω does not belong to!), and estimate the norm of the map
C�1,γ1

w � f �→ Δω(Δω + s)−1f ∈ C�2,γ2
w , for different values of (�j , γj), and interpo-

late. This eventually leads to the estimate ||Δω(Δω + s)−1fω||w;0,γ′′ ≤ C|s|−η for
some η > 0 and γ′′ ∈ (0, γ), proving that σΦ1 is a Kähler edge potential for small
enough σ. The rest of the proof of Proposition 6.1 then follows by induction.

Remark 6.2. It is worth comparing the above approach to Wu’s original ar-
gument. Appropriately translating Wu’s argument into our setting one would have
considered the operator N ′

σ(Φ) := log(ω̃n
σΦ/ω

n) − Φ, with ω̃ := ω − σ
√
−1∂∂̄fω.

This is clearly equivalent to the original complex Monge–Ampère equation. With
this definition,

Φ1 = (σΔω̃ − 1)−1 log
ω̃n

ωn
.

When a small multiple of fω is a Kähler edge potential, equivalently when the Ricci
curvature of the reference ω is uniformly bounded, then ω and ω̃ are uniformly
equivalent for all small σ. Then it is straightforward to show σΦ1 is small in D0,γ

w ,
essentially from its definition and by computing D2N ′. The approach we described
before was devised precisely to circumvent this lack of differentiability of fω.

6.4. Convergence. To show the convergence of the Ricci CP, in particular
implying the existence of a KE(E) metric, one must prove, as usual, openness and
closedness of the set M ∩ (−∞, μ] × {1} in (−∞, μ] × {1} (recall (6.8)); indeed,
since this set is nonempty by §6.3, this implies that it is equal to (−∞, μ] × {1}.
Openness follows as described in §4.5. Closedness follows from the following a priori
estimate.

Theorem 6.3. Along the Ricci continuity path (6.3),

(6.10) ||ϕ(s)||D0,γ
w

≤ C,

where C = C(||ϕ(s)||L∞(M),M, ω, β, n). When μ ≤ 0 or the twisted Mabuchi energy
is proper then

(6.11) ||ϕ(s)||L∞(M) ≤ c,

with c depending only on M,ω, β, n.

For very negative values of s this is a consequence of §6.3. Thus, (6.11) follows
from Proposition §7.1, and (6.10) is a corollary of the a priori estimates (7.8) for the
Laplacian of ϕ(s) together with the maximum principle, and (7.24) for the Hölder
semi-norm of the Laplacian of ϕ(s). These estimates are described in detail in §7
below. There is, however, one caveat in applying the maximum principle in the
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edge setting: the maximum could be attained on D and then, as the metric blows
up there, one cannot make sense of its Laplacian. A trick due to Jeffres [143] is
to add the barrier function c|s|εh with c, ε > 0 small. This is easily seen to “push”
the maximum away from D, while not changing the value of the function being
maximized by a whole lot: the latter fact is obvious, while the maximum is pushed
away from D precisely because the gradient of the barrier function blows up near
D. One can even let c tend to zero to see that the same exact estimates as in the
smooth case hold. An improved version of this maximum principle is proved in
[141, Lemma 5.1].

6.5. The Ricci iteration. As explained in §6.1, the Ricci continuity method
is motivated by the Ricci iteration, introduced in [214] (cf. Keller [146]). It is then
natural to go back and prove convergence of the Ricci iteration {ωkτ}k∈N. When
τ = 1, this leads to a particularly natural result:

lim
k→∞

Ric−k
β ω = ωKE,

where ωKE is a KEE metric of angle β, Ric−k := (Ric−1)k, and Ric−1 is the twisted
inverse Ricci operator defined in §5.3. It is interesting to note that when β = 1,
results of Donaldson [100] show that Ric−1 can be approximated by certain finite-
dimensional approximations, and this was further studied by Keller [146] yielding
Bergman type approximations to KE metrics.

The convergence of the Ricci iteration when τ > 1, or when τ = 1 and the
α-invariant is bigger than one was proved in [214] and adapts to the edge set-
ting once the a priori estimates needed for the Ricci CP are established. The
weak convergence when τ ≤ 1 in general was first established in [22] (and the
strong convergence then can be deduced from arguments of [141,214]) using a new
pluripotential estimate from [18,23] that can be stated as follows:

Lemma 6.4. Suppose J(ω, ωϕ) ≤ C. Then for each t > 0 there exists C ′ =

C ′(C,M,ω, t) such that
∫
M

e−t(ϕ−supϕ)ωn ≤ C ′.

In particular, since the K-energy decreases along the Ricci iteration, the proper-
ness assumption means that J(ω, ωkτ ) is uniformly bounded, independently of k.
Thus, rewriting (6.2) as

ωn
ψkτ

= ωnefω−(1− 1
τ )ψkτ− 1

τ ψ(k−1)τ ,

choosing p sufficiently large depending only on τ , say p/3 = max{1− 1
τ ,

1
τ }. Using

Ko
lodziej’s estimate and the Hölder inequality this yields the uniform estimate
oscψkτ ≤ C. Unlike for solutions of (6.3), the functions ψkτ need not be changing
signs. But an inductive argument shows that |(1− 1

τ )ψkτ − 1
τ ψ(k−1)τ | ≤ C [214, p.

1543]. The higher derivative estimates follow as in the Ricci CP since the Ricci
curvature is uniformly bounded from below along the iteration.

It is natural to also hope for similar results for a suitable Kähler–Ricci edge
flow (4.5). For Riemann surfaces, a rather complete understanding is given by
[177], as described in §4.4. Different approaches to short time existence in higher
dimensions are developed by Chen and Wang [68, 69, 264], Liu–Zhang [161], as
well as by Mazzeo and the author [176].
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6.6. Other approaches to existence. The Ricci continuity method gives a
unified proof of the classical results of Aubin, Tian, and Yau on existence of KE
metrics in the smooth setting, and naturally generalizes to give new and optimal
existence results for KEE metrics. This was the main contribution of [141,175], in
addition to the the linear theory and higher regularity. Later, two other alternative
approaches to existence were brought to fruition.

The first is a combination of a variational approach of Berman, and an approx-
imation technique of Campana, Guenancia, and Pǎun. Guenancia–Pǎun, building
on work of Campana–Guenancia–Pǎun, developed a smooth approximation method
[52, 127] to prove existence assuming a weak, say C0, solution exists. In their
scheme, such a solution is obtained by using the variational approach of Berman
[18], under a properness assumption on the K-energy (when μ ≤ 0 such a C0 so-
lution exists automatically by Ko
lodziej’s estimate [149]). One first approximates
the reference form ω (3.5) by a particular sequence of smooth cohomologous Kähler
forms ω0 +

√
−1∂∂̄ψε (with limε→0 ψε = (|s|2h)β), and then solves the regularized

Monge–Ampère equation

(6.12) (ω +
√
−1∂∂̄(ψε + φε))

n = ωn
0 e

f+μ(ψε+φε)(|s|2 + ε2)β−1.

These equations can be solved by standard results in the smooth setting, i.e., when
ε > 0. It thus suffices to prove a Laplacian estimate. When β ∈ (0, 1/2] this follows
directly from the classical Aubin–Yau estimate (7.16), once a careful and tedious
computation establishes that the bisectional curvature of ω0+

√
−1∂∂̄ψε is bounded

from below independently of ε [52]. When β ∈ (0, 1) this follows by additional clever
and lengthy computations showing that the negative contribution of the bisectional
curvature of ω0 +

√
−1∂∂̄ψε in the right hand side of (7.16), can be cancelled by

adding terms of the form Δωχ(ε
2 + |s|2h) on the left hand side, where χ : R+ → R+

is a certain auxiliary function [127]. As remarked in [127], a somewhat similar
trick appears in [42] to deal with C3 estimates, and is reviewed in §7.8. Later,
Datar–Song observed that relying on Lemma 3.14 and the Chern–Lu inequality, as
developed in [141, §7] (Corollary 7.2), one can avoid the aforementioned lengthy
computations. Either way, the main advantage of this method over a continuity
method is that, as first observed by Berman [18], no openness argument is needed.

The second is an angle-deforming continuity method that applies in the special
case of a smooth plurianticanonical divisor D ∈ | − mKM | in a Fano manifold.
It was introduced by Donaldson in lectures at Northwestern University in 2009
and later published in [102] in the case D is anticanonical, and the immediate,
yet useful, extension to the case of a plurianticanonical divisor, was noted by Li–
Sun [157]. Here, one constructs first a KEE of angle β along D for some small
β0 ∈ (0, 1). Equation (3.10) reads, RicωKEβ0

= β0ωKEβ0
+ (1 − β0)[D]/m, and

now we may consider β0 as a parameter and try to deform it to a given β. This
was first achieved for all small β0 by the combined results of Berman [18] and
[141]: the former shows that for all small β > 0 the twisted K-energy is proper,
while the latter shows that properness implies existence. Alternatively, Berman also
observes that when β0 = 1/k for k ∈ N sufficiently large, an orbifold KE metric
can be constructed using Demailly–Kollár’s orbifold version of Tian’s α-invariant
existence criterion [84, 238]. Next, Donaldson’s openness result implies that the
KEE metric of angle β0 can be deformed to a KEE of slightly larger angle, as long
as the Lie algebra aut(M,D) is trivial. This always holds in this Fano setting (but
not in general [60]) as first observed by Berman [18, p. 1291] (an algebraic proof of
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this was later given by Song–Wang [230]). Finally, the recently announced results
of [63, 249], together with Berman’s observation that properness of the twisted
K-energy is an open property (in β), can be combined to prove existence.

7. A priori estimates for Monge–Ampère equations

This section surveys the a priori estimates pertinent for the study of the (possi-
bly degenerate) complex Monge–Ampère equations (6.7), both in the smooth setting
(β = 1) and the edge setting (β ∈ (0, 1)). The L∞ estimate can be proved in at least
three different ways, as discussed in §7.1 with little dependence on the (possibly
unbounded) curvature of the background geometry. The Laplacian estimate, on the
other hand, is quite sensitive to the latter, and more care is needed here. We take the
opportunity to give a rather self-contained introduction to the Laplacian estimate
for the complex Monge–Ampère equation in §7.2–7.7. The Chern–Lu inequality
was used first by Bando–Kobayashi in the 80’s to obtain a Laplacian estimate with
bounded reference geometry [13], but fell into disuse since and was first systemat-
ically put to use for a general class of Monge–Ampère equations (more specifically,
whenever the solution metric has Ricci curvature uniformly bounded from below) in
the author’s work on the Ricci iteration [214] and fully exploited in [141] to obtain
estimates under a one-sided curvature bound on the reference geometry. This is
described in §7.3–7.4. Traditionally, except in those three articles, the Laplacian
estimate was essentially always derived using the Aubin–Yau estimate (with the ex-
ception of [18] that used the estimate from [214]). The latter estimate depends on
a lower bound on the bisectional curvature of the reference metric, and is therefore
not directly applicable for the Ricci continuity method. However, it always seemed
curious to the author that the Chern–Lu inequality can be derived as a corollary of
a general statement about holomorphic mappings, while the Aubin–Yau estimate is
classically derived using a lengthy and rather un-enlightening computation. In §7.5
we describe a new inequality on holomorphic embeddings, that we call the reverse
Chern–Lu inequality that yields the Aubin–Yau estimate as a corollary (§7.6–7.7).
The remainder of this section then describes approaches to Hölder continuity of the
metric. When β ∈ (0, 1/2] ∪ {1}, the asymptotic expansion of (3.23) proves that
third mixed derivatives of the type ϕij̄k are bounded. Subsection 7.8 indicates how
to obtain a uniform estimate for such derivatives by slightly modifying the original
approach of Calabi in the smooth setting. In general, the expansion (3.23) shows
that ϕij̄k �∈ L∞(M) but that ϕij̄k ∈ L2. Tian’s approach to proving a uniform local

W 3,2 estimate on ϕ is the topic of §7.9; Campanato’s characterization of Hölder
spaces implies a uniform D0,γ

w estimate on ϕ. Finally, §7.10 describes three other
approaches to D0,γ

s estimates.

7.1. Uniformity of the potential. Ko
lodziej’s estimate gives a uniform
bound on the oscillation of the solution u of (ω0 +

√
−1∂∂̄u)n = Fωn

0 in terms
of ||F ||L1+ε(M,ωn

0 ), ω0, and ε > 0 [149]. By (3.11) it suffices to take any ε in the

range (0, β
1−β ). Thus, Ko
lodziej’s estimate (together with the normalization along

(6.3)) directly provides the L∞ bound on the Kähler potential along the Ricci CP
for all s ≤ 0, and this is of course enough when μ ≤ 0. A different approach is to
use Moser iteration, as in Yau’s work in the smooth setting, which directly adapts
to this setting without change. The real challenge is then to obtain the estimate
when s > 0.
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The method used in [141] is to prove uniform bounds on the Sobolev and
Poincaré constants along the Ricci CP. Then, a standard Moser iteration argument
[246] gives a uniform control on the C0 norm of ϕ(s) in terms of I(ω, ωϕ(s)), which
is in turn controlled under the properness assumption.

The proof of the uniformity of the Poincaré inequality is a quick consequence of
the asymptotic expansion of the solutions ϕ(s). This expansion precisely shows that
ϕ(s) ∈ W 3,2 and so the integration by parts in the Bochner–Weitzenböck formula
is justified, and readily implies λ1(ωϕ(s)) ≥ s with strict inequality for all s < μ,
and equality when s = μ iff there exist holomorphic vector fields on M tangent to
D [102, Proposition 8],[141, Lemma 6.1].

The Sobolev inequality is trickier, but still the key is to use the validity of
the integrated form of the Bochner–Weitzenböck formula. More precisely, standard
results of Bakry and others on diffusive semigroups imply both the existence and
the uniformity of a Sobolev inequality under a general curvature-dimension condi-
tion (that precisely corresponds to the Bochner–Weitzenböck inequality holding on
a class of functions) as well as some assumptions on the algebra of functions on
which the (uniform) curvature-dimension condition holds [12]. In our setting, the
existence of a (possibly non-uniform in s) Sobolev inequality is easily verified by
the change of coordinate z �→ ζ and a covering argument. Moreover, one can verify,
using basic results on polyhomogeneity of solutions to quasilinear elliptic equations,
that the class D0,γ

w satisfies the conditions necessary for Bakry’s approach to be car-
ried out [141, §6]. Thus, this approach furnishes a uniform in s Sobolev inequality.
This approach also gives a uniform diameter estimate along the Ricci continuity
method. It is interesting to note that one could also use classical Riemannian ge-
ometry arguments (e.g., Croke’s approach for the isoperimetric inequality [77], and
Myers’ approach for the diameter bound [188]) provided one knew that between
every two points in M \ D there exists a minimizing geodesic entirely contained
in M \ D. This was shown very recently by Datar [79] building on a result on
Colding–Naber [76].

A completely different approach is to regularize the equation and prove that
solutions ϕ(s) can be approximated by smooth Kähler metrics whose Ricci curva-
ture is also bounded from below by s, and then use the standard results on Sobolev
bounds [63,249].

Finally, as in [18], one may use the pluripotential estimate of Lemma 5.9 to
obtain a C0 estimate via Ko
lodziej’s result. In fact, more recent and sophisticated
methods yield a Hölder estimate in this setting (see, e.g., [105,150]). Furthermore,
under stronger regularity assumptions on the right hand side there is also a Lipschitz
estimate due to B
locki [32].

7.2. Uniformity of the metric, I. We say that ω, ωϕ are uniformly equiv-
alent if C1ω ≤ ωϕ ≤ C2ω, for some (possibly non-constant) C2 ≥ C1 > 0. This is
implied by either

(7.1) n+Δωϕ = trωωϕ ≤ C2 and detω ωϕ ≥ C1C
n−1
2 /(n− 1)n−1,

or,

(7.2) n−Δωϕ
ϕ = trωϕ

ω ≤ 1/C1 and detω ωϕ ≤ C1C
n−1
2 (n− 1)n−1;
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conversely, it implies trωωϕ ≤ nC2 and detω ωϕ ≥ Cn
1 , as well as trωϕ

ω ≤ n/C1

and detω ωϕ ≤ Cn
2 . Indeed,

∑
(1 + λj) ≤ A, and Π(1 + λj) ≥ B implies 1 + λj ≥

(n− 1)n−1B/An−1; conversely, Π(1 + λj) ≥
(
1
n

∑
1

1+λj

)−n ≥ Cn
1 .

Let ι : (M,ωϕ) → (M,ω) denote the identity map. Consider ∂ι−1 either as a
map from T 1,0M to itself, or as a map from ΛnT 1,0M to itself. Alternatively, it is
section of T 1,0 �M ⊗ T 1,0M , or of KM ⊗ K−1

M , and we may endow these product
bundles with the product metric induced by ω on the first factor, and by ωϕ on
the second factor. Then, (7.1) means that the norm squared of ∂ι−1, in its two
guises above, is bounded from above by C2, respectively bounded from below by
C1C

n−1
2 /(n− 1)n−1. Similarly, (7.2) can be interpreted in terms of ∂ι.
Now, detω ωϕ = ωϕ

n/ωn = F (z, ϕ) is given solely in terms of ϕ (without
derivatives), it thus suffices to find an upper bound for either |∂ι−1|2 or |∂ι|2 (from
now on we just consider maps on T 1,0M).

The standard way to approach this is by using the maximum principle, and
thus involves computing the Laplacian of either one of these two quantities. The
classical approach, due to Aubin [7,8] and Yau [268], is to estimate the first, while
a more recent approach is to estimate the second [141,176,214], and this builds
on using and finessing older work of Lu [162] and Bando–Kobayashi [13].

We take the opportunity to explain here both of these approaches in a unified
manner since such a unified treatment seems to be missing in the literature. In
particular, essentially all known Laplacian estimates are seen to be a direct corollary
of the Chern–Lu inequality or its reverse form. We now explain this in detail.

7.3. Chern–Lu inequality. Let f : (M,ω) → (N, η) be a holomorphic map
between Kähler manifolds. We choose two holomorphic coordinate charts (z1, . . . , zn)
and (w1, . . . , wn) centered at a point z0 ∈ M and at a point f(z0) ∈ N , respec-
tively, such that the first is normal for ω while the second is normal for η. In those
coordinates, we consider the map

f : z = (z1, . . . , zn) �→ f(z) = (f1(z), . . . , fn(z)),

and write ω =
√
−1gij̄(z)dzi ∧ dzj , η =

√
−1hij̄(w)dw

i ∧ dwj , and

∂f |T 1,0M =
∂f j(z)

∂zi
dzi|z ⊗

∂

∂wj

∣∣
w(z)

= f j
i dz

i|z ⊗
∂

∂wj

∣∣
w(z)

,

so

(7.3) |∂fT 1,0M |2 = gil̄(z)hjk̄(f(z))f
j
i (z)f

k
l (z).

Thus, at z0,
(7.4)

Δω|∂fT 1,0M |2(z0) =
∑
p,q

gpq̄
∂2(gil̄hjk̄f

j
i f

k
l )

∂zp∂zp

=
∑
p

gpq̄
[
gil̄hjk̄,dēf

j
i f

k
l f

d
p f

e
q − hjk̄g

it̄gsl̄gst̄,pq̄f
j
i f

k
l + gil̄hjk̄f

j
ipf

k
lq

]
= −ω# ⊗ ω# ⊗Rη(∂f, ∂̄f, ∂f, ∂̄f) + (Ricω)# ⊗ η(∂f, ∂̄f)

+ gpq̄gil̄hjk̄f
j
ipf

k
lq,

where the last line is now coordinate independent. Here Rη denotes the curvature
tensor of η (of type (0, 4)), while ω# denotes the metric g−1 on T 1,0 �M (i.e., of
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type (2, 0)), and similarly (Ricω)# denotes the (2, 0)-type tensor obtained from
Ricω by raising indices using g. The last term in (7.4) is equal to |∇∂f |2, the
covariant differential of ∂f , a section of T 1,0M ⊗ T 1,0M ⊗ f�T 1,0N . Note, finally,
that η(∂f, ∂̄f) = f�η, and similarly other terms above can be expressed as pull-
backs from N to M .

Proposition 7.1. (Chern–Lu inequality) Let f : (M,ω) → (N, η) be a holo-
morphic map between Kähler manifolds. Then,
(7.5)
|∂f |2Δω log |∂f |2 = ((Ricω)# ⊗ η)(∂f, ∂̄f)− (ω# ⊗ ω# ⊗Rη)(∂f, ∂̄f, ∂f, ∂̄f) + e(f)

≥ (Ricω)# ⊗ η(∂f, ∂̄f)− ω# ⊗ ω# ⊗ Rη(∂f, ∂̄f, ∂f, ∂̄f),

where e(f) = |∇∂f |2 − |∂f |2|∂ log |∂f |2|2.
The proof follows from the previous paragraph, the identity uΔω log u = Δωu−

u|∂ log u|2, and the Cauchy–Schwarz inequality: indeed, since f is holomorphic,

(7.6) |∂f |2|∇∂f |2 ≥ 〈∇∂f, ∂̄f〉2 = |∂|∂f |2|2,
therefore e(f) ≥ 0. Note that ∂2f and ∂f are of course sections of different bundles,
and so we are abusing notation a bit when we write 〈∂∂f, ∂̄f〉, however the meaning
should be clear from (7.3). Note that the right hand side of (7.5) can be thought of
as the Ricci curvature of the bundle T 1,0 �M ⊗ f�T 1,0N equipped with the metric
g# ⊗ f�h.

A few words about the history of inequality (7.5). It was shown by Lu (more
generally on Hermitian manifolds) [162] (though “=” should be replaced by “≥”
in [162, (4.13)]). Chern [71] carried out a similar computation earlier for Δω|∂f |2
for ∂f considered as a map from ΛnT 1,0M to ΛnT 1,0N . As pointed out to us
by Donaldson, (7.4) is in fact a special case of the computation of Eells–Sampson
(with a slightly different sign convention) [103, (16)] on the Laplacian of the energy
density of a harmonic map (holomorphic maps are harmonic by op. cit., pp. 116–
118). In fact, as Eells–Sampson observe, when f is an immersion, (7.4) can also be
proved using the Gauss equations.

7.4. A corollary of the Chern–Lu inequality. The next result shows how
to estimate Δωϕ

log |∂ι|T 1,0M |2 solely under an upper bisectional curvature bound
on the target, and a generalized lower Ricci curvature bound on the domain.

Proposition 7.2. Let f : (M,ω) → (N, η) be a holomorphic map between
Kähler manifolds. Assume that Ricω ≥ −C1ω − C2f

�η and that Bisecη ≤ C3, for
some C1, C2, C3 ∈ R. Then,

(7.7) Δω log |∂f |2 ≥ −C1 − (C2 + 2C3)|∂f |2.
In particular, if f = ι : (M,ω)→ (M, η) is the identity map, and ω = η+

√
−1∂∂̄ϕ

then

(7.8) Δω

(
log trωη − (C2 + 2C3 + 1)ϕ

)
≥ −C1 − (C2 + 2C3 + 1)n+ trωη.

Using the Chern–Lu inequality to prove a Laplacian estimate for complex
Monge–Ampère equations seems to go back to Bando–Kobayashi [13], who con-
sidered the case Ricω ≥ −C2η. Next, the case Ricω ≥ −C1ω first appeared
in proving a priori Laplacian estimate for the Ricci iteration [214], where both
the Bando–Kobayashi estimate and the Aubin–Yau estimate do not work directly.
Proposition 7.2 combines both cases, and first appeared in [141, Proposition 7.1].
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7.5. The reverse Chern–Lu inequality. The following is a new, reverse
form of the Chern–Lu inequality.

Proposition 7.3. (Reverse Chern–Lu inequality) Let f : (M,ω) → (N, η) be
a holomorphic map between Kähler manifolds that is a biholomorphism onto its
image. Then,
(7.9)

|∂f |2Δη log |∂f |2 ◦ f−1 =− (ω# ⊗ Ric η)(∂f, ∂̄f)

+ ((Rω)
# ⊗ η ⊗ η#)(∂f, ∂̄f, ∂f−1, ∂̄f−1) + e(f)

≥− ω# ⊗ Ric η(∂f, ∂̄f) + (Rω)
# ⊗ η ⊗ η#(∂f, ∂̄f, ∂f−1, ∂̄f−1),

where e(f) = |∇1,0∂f |2 − |∂f |2|∇1,0
η log |∂f |2|2.

Proof. Mostly keeping the notation of §7.3 we compute Δηtrωη with respect
to two holomorphic coordinate charts, but now we only assume z = (z1, . . . , zn) is
normal for g, and let w = (w1, . . . , wn) = f(z). By our assumption on f , w is a
holomorphic coordinate on f(M). Then,
(7.10)

Δη|∂fT 1,0M |2 =
∑
p,q

hpq̄ ∂2

∂wp∂wq

[
gil̄(z)hjk̄(f(z))f

j
i (z)f

k
l (z)

]
=

∑
p,q

hpq̄
[
gil̄hjk̄,pq̄f

j
i (z)f

k
l (z)− git̄gsl̄gst̄,dēhjk̄(f

−1)dp(f
−1)eqf

j
i f

k
l

]
= −(ω)# ⊗ Ric η(∂f, ∂̄f) + (Rω)

# ⊗ η(∂f, ∂̄f, ∂f−1, ∂̄f−1) + e1(f).

Here,

hpq̄hjk̄,pq̄ = hpq̄(−Rjk̄pq̄ + hst̄hjt̄,phsk̄,q̄),

so

(7.11) e1(f) := gil̄(z)hpq̄hst̄hjt̄,phsk̄,q̄(w)f
j
i (z)f

k
l (z) = |∇1,0∂f |2.

Also, by (Rω)
# we denote the (2, 2)-type version of the curvature tensor. Next,

e2(f) := Δη|∂f |2 − |∂f |2Δη log |∂f |2 = |∂f |2|∇1,0
η log |∂f |2|2.

This time,

(7.12) e1(f)|∂f |2 = |∇1,0∂f |2|∂f |2 ≥ 〈∇1,0∂f, ∂̄f〉2 = |∇1,0
η |∂f |2|2 = e2(f)|∂f |2,

using the Kähler condition. Therefore,

|∂f |2Δη log |∂f |2 ≥ −(ω)# ⊗ Ric η(∂f, ∂̄f) + (Rω)
# ⊗ η(∂f, ∂̄f, ∂f−1, ∂̄f−1),

as desired. �

Note that (7.12) seems to simplify, or at least cast invariantly, Aubin–Yau’s
derivation, done in coordinates, of a similar inequality, cf. [268, (2.15)], [227,
p. 99].

Remark 7.4. The reverse Chern–Lu inequality is not the same inequality one
would obtain from the Chern–Lu inequality by considering the inverse of the identity
map. In fact, the latter would yield

|∂f−1|2Δη log |∂f−1|2 ≥ (Ric η)#⊗ω(∂f−1, ∂̄f−1)−η#⊗Rω(∂f
−1, ∂̄f−1, ∂f−1, ∂̄f−1),
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or specifically, considering the map ι−1 : (M,ω) → (M,ωϕ),

(7.13) Δω log(n+Δωϕ) ≥ (Ricω)# ⊗ ωϕ(∂ι, ∂̄ι)− ω# ⊗Rωϕ
(∂ι, ∂̄ι, ∂ι, ∂̄ι),

which is less useful, since it is hard to estimate the full bisectional curvature of
a solution to a complex Monge–Ampère equation (which only controls the Ricci
curvature).

7.6. The Aubin–Yau inequality as a corollary. We now demonstrate how
the classical Aubin–Yau inequality [7, 268] (see Siu [227, p. 114] for a compari-
son between the approaches of Aubin and Yau) can be deduced using the reverse
Chern–Lu inequality. It allows to work under somewhat complementary curvature
assumptions to those in Proposition 7.2.

Proposition 7.5. (Aubin–Yau Laplacian estimate) In the above, let f = id :
(M,ω)→ (M, η) be the identity map, and assume that Ric η ≤ C1ω+C2η and that
Bisecω ≥ −C3, for some C1, C2, C3 ∈ R. Then,

(7.14) trωηΔη log trωη ≥ −n(C1 + C3)− C2trωη − C3trωη trηω.

In particular, if η = ω +
√
−1∂∂̄ϕ then

(7.15) Δωϕ

(
log trωωϕ − (C3 + 1)ϕ

)
≥ −nC1 + C3

trωωϕ
− (C2 + n(C3 + 1)) + trωϕ

ω,

hence

(7.16) Δωϕ

(
log trωωϕ − (2C3 + C1 + 1)ϕ

)
≥ −(C2 + n(2C3 + C1 + 1)) + trωϕ

ω.

Proof. Proposition 7.3 implies (7.14) by direct computation. Since trωϕ
ω =

n − Δωϕ
ϕ, this inequality is equivalent to (7.15). Since trωωϕ trωϕ

ω ≥ n (since

trA trA−1 ≥ n for every positive matrix A), this last inequality implies (7.16). �
Remark 7.6. An older inequality of Aubin [6, p. 408] also follows from (7.10)

when ω has nonnegative bisectional curvature. Aubin used this inequality to prove
the Calabi conjecture under this curvature assumption.

Remark 7.7. The reverse Chern–Lu inequality also yields, by considering the
inverse of the identity map ι−1 : (M,ωϕ) → (M,ω),
(7.17)
Δω log(n−Δωϕ

ϕ) ≥ −(ωϕ)
# ⊗ Ricω(∂f, ∂̄f) + (Rωϕ

)# ⊗ ω(∂f, ∂̄f, ∂f−1, ∂̄f−1),

which is not very useful for the Monge–Ampère equations we consider here for
the same reasons as in Remark 7.4. In summary, there are four quantities one
can estimate, and the corresponding four inequalities are (7.8) (Chern–Lu), (7.13)
(Chern–Lu backwards), (7.15) (reverse Chern–Lu, i.e., Aubin–Yau), and (7.17)
(reverse Chern–Lu backwards), and it is the first and the third which are most
useful. One may also easily derive four corresponding parabolic versions of the
above inequalities: we leave the details to the reader.

7.7. Uniformity of the metric, II. The estimates of the previous para-
graphs imply uniformity of the metric under various curvature assumptions cou-
pled with uniform estimates on the potential and/or the volume form. Let us
now state these consequences carefully. Part (i) in the next result is a corol-
lary of the Chern–Lu inequality, and seems to have first been formulated in this
generality in [141]. Part (ii) is a corollary of the reverse Chern–Lu inequal-
ity, and seems to be phrased in this generality for the first time here. Part
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(iii) in the case Ricωϕ = Ricω +
√
−1∂∂̄ψ2 −

√
−1∂∂̄ψ1 is due to Pǎun [196]

(whose more quantitative formulation appears in [22,24]) together with Campana–
Guenancia–Pǎun [52] that allows to assume only a lower bound on the bisectional
curvature of the reference metric (without an upper bound on the scalar cur-
vature). Here we explain how it (or rather its slight generalization to the case
Ricωϕ ≤ Ricω +

√
−1∂∂̄ψ2 −

√
−1∂∂̄ψ1), too, follows from the reverse Chern–Lu

inequality.

Corollary 7.8. Let ϕ ∈ D0,γ
w ∩ C4(M \D) ∩ PSH(M,ω).

(i) Suppose that Ricωϕ ≥ −C1ω − C2ωϕ and Bisecω ≤ C3 on M \D. Then

(7.18) −n < Δωϕ ≤ (C1 + n(C2 + 2C3 + 1))e(C2+2C3+1) oscϕ − n.

(ii) Suppose that Ricωϕ ≤ C1ω + C2ωϕ and Bisecω ≥ −C3 on M \D. Then
(7.19)

−n < Δωϕ ≤ (C2 + n(2C3 + C1 + 1))n−1

n− 1

∣∣∣∣∣∣e(2C3+C1+1)(ϕ−minϕ)ωϕ
n

ωn

∣∣∣∣∣∣
L∞

− n.

(iii) Let ψ1, ψ2 ∈ D0,γ
w with ψ2/C4 ∈ PSH(M,ω). Suppose that Ricωϕ ≤ Ricω +√

−1∂∂̄ψ2 −
√
−1∂∂̄ψ1 and Bisecω ≥ −C3 on M \D. Then,

(7.20) −n < Δωϕ ≤ (nA)n−1

n− 1

∣∣∣∣∣∣e(Aϕ+ψ2−min(Aϕ+ψ2))
ωϕ

n

ωn

∣∣∣∣∣∣
L∞

− n,

where A := 1 + C4 + C3 +
| inf Δωψ1|

n .

Proof. (i) By (7.8), trωωϕ(p) ≤ C1+n(C2+2C3+1), where log trωωϕ−(C2+
2C3 + 1)ϕ is maximized at p ∈ M \ D, proving (7.18). Notice that here we used
that the maximum is always attained on M \D, as explained in §6.4 (see [141, §7]
for details) by using barrier functions of the form ε1|s|ε2 .
(ii) By (7.16), trωϕ

ω(p) ≤ C2+n(2C3+C1+1), where log trωωϕ− (2C3+C1+1)ϕ

is maximized at p ∈ M \D. But, trωωϕ
ωn

ωϕ
n ≤ 1

n−1 (trωϕ
ω)n−1. Thus,

maxM trωωϕ ≤ trωωϕ(p)e
(2C3+C1+1)(ϕ(p)−minϕ)

≤ e(2C3+C1+1)(ϕ(p)−minϕ)ωϕ
n

ωn
(p)

1

n− 1
(C2 + n(2C3 + C1 + 1))n−1.

(iii) Proposition 7.3 implies

trωωϕΔωϕ
log trωωϕ ≥ −nC3 − C3trωωϕtrωϕ

ω − sω +Δωψ1 −Δωψ2,

where sω is the scalar curvature of ω. However, since we do not want to assume an
upper bound for the scalar curvature (e.g., if Bisecω ≤ C5 then −sω ≥ −n(n+1)C5

[148, pp. 168–169]), we observe that Proposition 7.3 also implies

(7.21) trωωϕΔωϕ
log trωωϕ ≥ R#

ω ⊗ ωϕ ⊗ ωϕ
# − sω +Δωψ1 −Δωψ2.

Recall that here the first term on the right hand side is defined as the contraction
of the curvature tensor of ω that appears in (7.10). As in [52, Lemma 2.2], one
can then combine the terms depending on the curvature of ω, as we now explain.
Indeed, this is most easily seen upon diagonalization (choosing normal holomorphic
coordinates so that at a given point p, ω is represented by the identity matrix, while
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ωϕ is represented by a diagonal matrix diag{l1, . . . , ln} while ωϕ
# is represented by

diag{1/l1, . . . , 1/ln}). Then,

R#
ω ⊗ ωϕ ⊗ ωϕ

# − sω =
∑
j,k

( lj
lk
− 1

)
Rjj̄,kk̄ =

∑
j≤k

( lj
lk

+
lk
lj
− 2

)
Rjj̄,kk̄

≥ −C3

∑
j≤k

( lj
lk

+
lk
lj
− 2

)
,

where, by assumption, the numbers Rjj̄,kk̄ are bounded from below −C3 and
Rjj̄,kk̄ = Rkk̄,jj̄ by the symmetries of the curvature tensor. But now,∑
j≤k

( lj
lk

+
lk
lj
− 2

)
=

∑
j,k

( lj
lk
− 1

)
= −n(n+1)+

∑
j,k

lj
lk
≤ −n(n+1)+

∑
j

1

lj

∑
k

lk,

and this last expression equals −n(n + 1) + trωϕ
ωtrωωϕ(p). Thus, returning to

(7.21), we now deduce,

Δωϕ
log trωωϕ ≥ (n(n+ 1)C3 +Δωψ1 −Δωψ2)/trωωϕ − C3trωϕ

ω.

Since trωωϕ trωϕ
ω ≥ n, Δωϕ

log trωωϕ ≥ −[C3+
1
n | inf Δωψ1|]trωϕ

ω−Δωψ2/trωωϕ,
hence,

Δωϕ

(
log trωωϕ−

[
1+C3+

| inf Δωψ1|
n

]
ϕ
)
≥ trωϕ

ω−n
[
1+C3+

| inf Δωψ1|
n

]
−Δωψ2

trωωϕ
.

Pǎun’s additional observation is that the term Δωψ2/trωωϕ can be controlled even
though it has the ‘wrong’ sign, under the plurisubharmonicity assumption. Indeed,
since 0 ≤ C4ω +

√
−1∂∂̄ψ2 then each eigenvalue of this nonnegative form (that we

take with respect to ωϕ) is controlled by the sum of the eigenvalues, i.e., C4ω +√
−1∂∂̄ψ2 ≤ (C4trωϕ

ω+Δωϕ
ψ2)ωϕ. Taking the trace of this inequality with respect

to ω,

−Δωψ2

trωωϕ
≥ nC4

trωωϕ
− C4trωϕ

ω −Δωϕ
ψ2 ≥ −C4trωϕ

ω −Δωϕ
ψ2.

Thus,

(7.22)
Δωϕ

(
log trωωϕ −

[
1 + C4 + C3 +

| inf Δωψ1|
n

]
ϕ+ ψ2

)
≥ trωϕ

ω

− n
[
1 + C4 + C3 +

| inf Δωψ1|
n

]
.

Arguing as in (ii) proves (7.20). �

In all three cases, it follows that 1
Cω ≤ ωϕ(s) ≤ Cω, with C depending only

on the constants appearing in (7.18)–(7.20) and in (7.1)–(7.2), with the precise
dependence computed in §7.2. Of course, if one assumes equalities in the expressions
for Ricωϕ instead of inequalities, then one can express the ratio of the volume forms
more explicitly to make the estimates (7.19)–(7.20) more explicit.

7.8. Uniformity of the connection: Calabi’s third derivative estimate.
The term e1(f) = |∇∂f |2 of (7.11) is the norm squared of the connection associated
to g# ⊗ f�h. on T 1,0 �M ⊗ f�T 1,0N . When f = id it equals |∇1,0∂∂̄ϕ|2, with the
norm taken with respect to ωϕ ⊗ωϕ ⊗ ω. But assuming that the metrics ωϕ and ω
are uniformly equivalent, this term is uniformly equivalent to a term obtained by
using the norm associated to ωϕ alone, namely S := |∇1,0∂f |2ωϕ

. Under appropriate
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bounds on Rω and Ricωϕ it follows from (7.10) that Δωϕ
trωωϕ ≥ C1S−C2, with Ci

depending also on the equivalence between ω and ωϕ. Standard computations going

back to Calabi [47] also show that Δωϕ
S ≥ −C ′

3|Rω|S−C ′
4|DRω|S1/2 ≥ −C3S−C4,

with constants depending on bounds on Rω and its covariant derivative. Thus,
Δωϕ

(S + C3+1
C1

trωωϕ) ≥ S − C3+1
C1

C2 − C4. Using the maximum principle now

yields a bound on S. This summarizes the proof in the smooth setting [6, p. 410],
[268, §3],[204].

In the edge setting, Rω and its covariant derivative are no longer bounded,
and so this approach has somewhat limited applicability. For instance, when β ∈
(0, 1/2), Brendle observed (and this also follows from the asymptotic expansion of
[141, Proposition 4.3]) that |∇Rω| ≤ C

|s|ε−β
h

for some ε > 0. Thus, an inequality

from the previous paragraph implies Δωϕ
S ≥ −C3S − C′

4

2 (|DRω|2 + S) ≥ −(C3 +
C′

4

2 )S − C′
4

2
C2

|s|2ε−2β
h

. But since Δωϕ
|s|2εh ≥ C5|s|2ε−2β

h − C6, the maximum principle

can be applied, this time to S + C3+1
C1

trωωϕ + |s|2εh , to conclude [42].

7.9. Tian’s W 3,2-estimate. A general result due to Tian [239], proved in
his M.Sc. thesis, gives a local a priori estimate in W 3,2 for solutions of both real
and complex Monge–Ampère equations under the assumption that the solution
has bounded real or complex Hessian and the right hand side is at least Hölder.
By Campanato’s classical integral characterization of Hölder spaces [53,131] this
implies a uniform Hölder estimate on the Laplacian. This result can be seen as
an alternative to the Evans–Krylov theorem (and, in fact, appeared independently
around the same time). Let B1 ⊂ Cn be the unit ball. Consider the equation

(7.23) det[uij̄ ] = eF−cu, on B1.

The following is due to Tian. The proof in [239] is written for the real Monge–
Ampère, but applies equally to the complex Monge–Ampère.

Theorem 7.9. Suppose that u ∈ C4 ∩ PSH(B1) satisfies (7.23). For any γ ∈
(0, 1), there exists and C > 0 such that for any 0 < a < 1/2,

(7.24)

∫
Ba

|uij̄k|2 ≤ Ca2n−2+2γ .

Thus, ||ϕij̄ ||C0,γ(B1/4) ≤ C ′. The constants C,C ′ depend only on γ, β, ω, n,

||uij̄ ||L∞(B1), ||F ||C0,γ(B1), and ||u||L∞(B1).

The main ideas are as follows. First, an easy computation shows that
(det[ukl̄]u

ij̄)i = 0 [239,263]. Consider the Monge–Ampère equation det[uij̄ ] = h.
Taking the logarithm and differentiating twice, multiplying by h, and using the
previous identity, yields

(7.25) −huis̄utj̄uts̄,l̄uij̄,k + (huij̄ukl̄,i)j̄ = hkl̄ − hkhl̄/h, for each k, l

Thus, the Monge–Ampère equation roughly becomes a second order system of equa-
tions in divergence form for the Hessian, with a quadratic nonlinearity, resembling
the harmonic map equation. In the harmonic map setting, a result of Giaquinta–
Giusti shows that a bounded weak W 1,2-solution is necessarily Hölder [122]. Since
we already have bounds on the real/complex Hessian, the situation is quite analo-
gous. As shown by Tian, the Monge–Ampère equation can be treated in just the
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same way, proving Theorem 7.9. A key difference between the two settings is deal-
ing with a system, so some extra algebra facts are needed. This method makes clear
that no additional curvature assumptions on the reference geometry are needed for
this estimate.

The discussion so far was in the absence of edge singularities. However, a very
nice feature of the above result is that since its proof involves integral quantities,
they carry over verbatim to the edge situation Cβ × Cn−1 (recall (3.4)), modulo
only one very minor difference [141, Theorem B.1]: since the vector field V1 =

z1−β
1 ∂z1 = ∂ζ is multivalued, then if f is a smooth function in (z1, . . . , zn) = (z1, Z)
then choosing any branch and considering the function f1 = V1f on the model
wedge, f1 satisfies the boundary condition

(7.26) f1(re
√
−12πβ, Z) = e

√
−12π(1−β)f1(r, Z)

(as well as a corresponding boundary condition on the first derivatives). Thus, the
Sobolev inequality satisfied by such functions deteriorates as β approaches 1 (but
this is harmless if β is fixed, for instance). Moreover, harmonic functions with such
boundary conditions satisfy the estimate

(7.27) ||dh||2L2(Cβ(a),ωβ)
≤ Ca2n−4+2β−1 ||dh||2L2(Cβ(1),ωβ)

,

instead of the usual one with a2n. Again, this is harmless, and the only effect it
has is to restrict the range of possible Hölder exponents in the following immediate
corollary of Theorem 7.9 [141,239]. Consider the singular equation

(7.28) det[uij̄ ] = eF−cu|z1|2β−2, on B1 \ {z1 = 0}.

Corollary 7.10. Suppose that u ∈ C4({z1 �= 0}) ∩ PSH(B1) satisfies (7.28).
For any γ ∈ (0, 1

β − 1) ∩ (0, 1), there exists a C > 0 such that for any 0 < a < 1/2,

(7.29)

∫
Ba

|uij̄k|2 ≤ Ca2n−2+2γ .

Here fi := Vif , where V1 = z1−β
1 ∂z1 = ∂ζ (a choice of one branch), V2 = ∂z2 , . . . , Vn

= ∂zn . Thus, ||uij̄ ||C0,γ ≤ C ′. The constants C,C ′ depend only on γ, β, ω, n,
||uij̄ ||L∞(B1), ||F ||C0,γ(B1), and ||u||L∞(B1).

7.10. Other Hölder estimates for the Laplacian. Next, we describe sev-
eral other Hölder estimates on the Laplacian of a solution of a complex Monge–
Ampère equation. The first is a weaker D0,γ

e estimate that follows the Evans–
Krylov method. The other estimates are alternative approaches to the D0,γ

w esti-
mate descried in §7.9 (we also mention the approach in [51] under the restriction
β ∈ (0, 2/3)).

7.10.1. The complex Evans–Krylov edge estimate. Compared with the approach
presented in §7.9, perhaps a more well-known approach to the Hölder estimate on
the Laplacian of a solution of a complex Monge–Ampère equation is an adaptation
of the Evans–Krylov estimate to the complex setting. This has been carried out
for the original formulation [227] and in divergence form [263]; the latter requires
slightly less control on the right hand side of the equation than the former (see also
[34]). Let us then concentrate on the relevant adaptation to the singular setting.

The standard complex Evans–Krylov estimate adapts rather easily to the edge
setting to give a uniform D0,γ

e estimate in terms of a Laplacian estimate. The key
point is to use properties of the edge Hölder spaces under rescaling, and a Lipschitz
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estimate on the right hand side that is valid for the Ricci continuity path (and fails
for some other paths). We present the result, closely following [141, §8].

The Evans–Krylov technique is local; we may thus concentrate on the neigh-
borhood of D where r ≤ 1. We cover this region with Whitney cubes

W = WR(y0) := {p ∈ M \D : |y(p)− y0| < R, θ(p) ∈ Iπβ,

r(p) ∈ (R, 2R)} ⊂M \D,

where R > 0 and y0 ∈ D. Here Iπβ denotes any interval in S1
2πβ of length πβ, so

each WR(y0) is simply connected. Clearly {r ≤ 1} \D is covered by the union of
such cubes. Our goal is to show that there exists a fixed γ′ ∈ (0, 1) and a uniform
C > 0 such that ||Pijϕ||C0,γ′

e (W )
≤ C for all such Whitney cubes W (here Pij are the

special second order operators discussed in §2.1, cf. the discussion in §3.4). Taking
the supremum over W gives the uniform estimate [ϕ]D0,γ′

e
≤ C ′.

The key point here is that log r and yi/r are distance functions for the complete
metrics (d log r)2 and |dZ|2/r2, respectively, and the model metric is the product
of these two, i.e., ωβ/r

2 = (d log r)2+ dθ2+ |dZ|2/r2. Thus, we may in fact restrict
to such cubes when computing the Hölder norm. Indeed, if the supremum in the
definition of the Hölder seminorm was nearly attained for two points p, q ∈ M \D
not contained in one such cube then either r(p)/r(q) > 2 or r(q)/r(p) > 2. But
then the distance between p and q with respect to ωβ/r

2 would be bigger than
some fixed constant, and the Hölder seminorm would then be uniformly controlled
by the C0 norm, which is, by assumption, already bounded. Similarly we see that
|y(p)/r(p)− y(q)/r(q)| must be uniformly bounded.

This property of ωβ/r
2 manifests itself in another way in the proof. Namely,

denoting Sλ(r, θ, y) = (λr, θ, λy) the dilation map then

||S�
λf ||C0,γ

e (W1(y0))
= ||f ||C0,γ

e (Wλ(y0))
.

Thus, we can perform all estimates on a cube of fixed size.
Finally, the last crucial observation is that for any ϕ ∈ He

ω, the metric ωϕ

when viewed in a “microscope” looks (up to perhaps a linear transformation of the
original coordinates) very close to the model (product) metric ωβ . In particular,
given ε > 0, there exists λ0 = λ0(ε, ϕ) such that for all λ > λ0,

(7.30) (1− ε)|d�Z|2 ≤ λ−2S�
λω(�Z) ≤ (1 + ε)|d�Z|2,

where �Z = (Z1, . . . , Zn) are holomorphic coordinates on W1, where λ�Z = �ζ =
(ζ, z2, . . . , zn), are the original coordinates on Wλ.

To summarize, when we work in the rescaled cubes (that we may assume are of

fixed size) and use the coordinates �Z, the “rescaled pulled-back” metric is essentially
equivalent to the model Euclidean metric (7.30). Fortunately, also the complex
Monge–Ampère equation we are trying to solve transforms very nicely under this
same rescaling coupled with pull-back under the dilation map. So, at the end of
the day, one may simply apply the standard Evans–Krylov argument on this cube
of fixed size (that is disjoint from D). There is one small caveat, however. In
the (divergence form of the) Evans–Krylov argument one differentiates the Monge–
Ampère equation twice to obtain a differential inequality and one must control the
right hand side in C0,1. More precisely, provided then that we can estimate the
Lipschitz norm of the right hand side efω−sϕωn, we can carefully put all these
observations together to prove a uniform D0,γ

e estimate by directly applying the



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

110 YANIR A. RUBINSTEIN

divergence form complex Evans–Krylov estimate to the (uniformly elliptic) metric
λ−2S�

λω on the (fixed size) cube W1(y0), and to the local Kähler potential λ−2(ψ+
ϕ) ◦ Sλ (here ψ is a local potential for ω). The required aforementioned Lipschitz
estimate is proved in [141, Lemmas 4.4,8.3] and can be summarized as follows (note
that it proves a wedge Lipschitz estimate which is more than we need).

Lemma 7.11. Let log h(s, t) := logF +log det[ψij̄ ] = tfω+ct−sϕ+log det[ψij̄ ],
with s > S. Then the following estimates hold with constants independent of t, s:
(i) For β ≤ 2/3, ||h(s, t)||w;0,1 ≤ C = C(S,M, ω, β, ||ϕ(s, t)||C0,1

w
).

(ii) For β ≤ 1, ||h(s, 1)||w;0,1 ≤ C = C(S,M, ω, β, ||ϕ(s, 1)||C0,1
w

).

The point of the proof of this lemma is that fω and det[ψij̄ ] are in C
0, 2β−2
w ,

and therefore so is h. This is however in C0,1
w only when β ≤ 2/3. Fortunately, the

combination fω + log det[ψij̄ ] is nevertheless always in C0,1
w . On the other hand,

this crucial cancellation is false for tfω + log det[ψij̄ ] when t < 1! Thus, we must
use the Ricci continuity path in this juncture.

To summarize, we have:

Theorem 7.12. Let ϕ(s) ∈ D0,γ
e ∩ C4(M \ D) ∩ PSH(M,ω) be a solution to

(6.3) with s > S and 0 < β ≤ 1. Then

(7.31) ||ϕ(s)||D0,γ
e

≤ C,

where γ > 0 and C depend only on M,ω, β, S and ||Δωϕ(s)||C0 , ||ϕ(s)||C0 .

7.10.2. A harmonic map type argument vs. a Schauder type argument. Equa-
tion (7.30) was simply a consequence of the definition of a Kähler edge metric.
However, it turns out that under some geometric assumptions it is possible to ob-
tain a priori control on λ(ε, ϕ). Intuitively, of course, if along a family {ωϕj

} of
Kähler edge metrics supj λ(ε, ϕj) = ∞ then there exists p ∈ D such that the family
of metrics, while being bounded, fails to be uniformly continuous up to the bound-
ary at p ∈ D. This kind of behavior can be easily ruled out by the existence of a
unique tangent cone at p. In [63, II] this is proved when ωϕj

are KEE metrics of
angle βj < β∞ < 1. This can be generalized to Kähler edge metrics with a uniform
lower bound on the Ricci curvature [250]. One idea is to notice that a rescaled
limit will be Ricci flat and then use results of [57,63,249].

Be it as it may, this improved control on the metric allows to upgrade to Hölder
bounds. We explain two approaches.

The first is similar in spirit to the proof of Theorem 7.9 and is due to Tian [250].
In the following paragraph all norms, covariant derivatives and Laplacian are with
respect to ωβ . Thus, let v be the unique ωβ-harmonic (1,1)-form equal to ωϕ on
∂Ba(y) ⊂ U , where U is a neighborhood of D (this neighborhood is the same for the
whole family of potentials ϕ we are considering) on which (1−ε)ωβ < ωϕ < (1+ε)ωβ .
Since ωβ is ωβ-harmonic, then Δ|v−ωβ |2 = |∇(v−ωβ)|2 ≥ 0. The maximum prin-
ciple then gives that −εωβ < v−ωβ < εωβ on Ba(y), and thus also −εωβ < v−ωϕ <
εωβ on Ba(y). Multiplying (7.25) by ω̂ := v − ωϕ and integrating directly implies
that ||∇ω̂||2L2(Ba(y))

is controlled from above by Cε||∇ωϕ||2L2(Ba(y))
+ Cr2n. Now,

since ||∇v||2L2(Bσ(y))
≤ C

(
σ
a

)2n−4+ 2
β ||∇v||2L2(Ba(y))

, and using Dirichlet’s principle

||∇v||L2(Ba(y)) ≤ ||∇ωϕ||L2(Ba(y)), we conclude that

||∇ωϕ||2L2(Bσ(y))
≤ C

(
ε+

(σ
a

)2n−4+ 2
β

)
||∇ωϕ||2L2(Ba(y))

+ Ca2n.
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SMOOTH AND SINGULAR KÄHLER–EINSTEIN METRICS 111

In fact, these arguments are very similar to the ones that go into the proof of
Theorem 7.9; the only difference is in showing the smallness of ||∇ω̂||2L2(Ba(y))

. The

latter proof uses completely elementary tools (Moser iteration, essentially). At any
rate, given the inequality above, it is standard to show the estimate (7.29). The
arguments above assume that Fij̄ ∈ L∞, but a close examination shows that had
F only been assumed Hölder than by elementary arguments one must replace the
term Ca2n by a slightly more singular term Ca2n−δ, however still sub-critical. We
omit the elementary details.

The second approach is to cleverly use the Schauder estimate for Δ. A key
point is that given any δ ∈ (0, 1) there exists a sufficiently small ball Ba(y), with a
uniformly positive, such that

|| det[uij̄ ]−Δu||C0,γ
w

≤ δ[u]D0,γ
w

.

This can be proved by elementary properties of the function det( · )− tr( · ) near the
identity on the space of positive Hermitian matrices [239, Lemma 2.2],[63, II]. By
the Monge–Ampère equation we know that det[uij̄ ] is uniformly controlled. Thus,
by the triangle inequality and Schauder estimate of Theorem 3.7 (i),

||Δu||C0,γ
w

≤ δ[u]D0,γ
w

+ C ≤ Cδ(||Δu||C0,γ
w

+ ||u||C0,γ
w

+ 1).

Choosing δ small enough gives a uniform bound on ||Δu||C0,γ
w

. In the argument
above we have been particularly sloppy in keeping track of the scaling; we refer to
[63, II] for details.

7.10.3. An approximation by orbifolds argument. In the very recent revision
of the paper of Guenancia–Pǎun (that appeared during the final revision of the
present article) one finds a yet different approach to the D0,γ

w estimate, that we
only attempt to sketch briefly, restricting for simplicity to the case D is smooth.
First, the authors assume that β is rational, namely β = p/q for p, q ∈ N with
no common nontrivial divisors. Then, working on the ramified q cover essentially
reduces one to the situation of edge metrics of angles 2πp. In fact, under this
cover, that amounts to the map z �→ z1/q, the metric |z|2β−2|dz|2 pulls-back to
q2|w|2p−2|dw|2 (substitute z = wq). When p = 1 this solves the problem, of course
(the orbifold case). When p ∈ N, the authors show that all the tools from the
standard complex Evans–Krylov theorem have appropriate analogues in this large
angle regime. Namely, a Sobolev inequality with an appropriate constant and a
Harnack inequality (for such degenerate (vanishing along D to possibly high order)
metrics). The key point here is that these inequalities do not break down when
p tends to infinity. Then, the authors express the Monge–Ampère equation in
terms possibly singular vector fields 1

qw
1−p∂w, ∂z2 , . . . , ∂zn , to obtain the desired

conclusion. Finally, the authors approximate an arbitrary β ∈ (0, 1) by rational
numbers, and approximate the initial Monge–Ampère equation by Monge–Ampère
equations with β replaced by those rational numbers. By stability results for the
complex Monge–Ampère operator the solutions of these approximate equations will
converge to the solution of the original equation. Thus, taking a limit, the D0,γ

w

estimate carries over to the solution of the original equation.
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8. The asymptotically logarithmic world

As discussed in §3.3, a basic obstruction to existence of KEE metrics is the
cohomological requirement that the R-divisor

(8.1) Kβ = Kβ
M := KM +Dβ := KM +

r∑
i=1

(1− βi)Di

satisfy

(8.2) −Kβ
M equals μ times an ample class, with μ ∈ R.

Here, β := (β1, . . . , βr) ∈ (0, 1]r, M is smooth, D �= 0 has simple normal crossings

(as we will assume throughtout this whole section), and Kβ
M is sometimes referred

to as the twisted canonical bundle associated to the triple (M,D, β). In this section
we will be interested in classification questions, perhaps the most basic of which is:

Question 8.1. What are all triples (M,D, β) for which (8.2) holds?

When μ ≤ 0, according to Theorem 4.13, such a classification is tantamount
to a classification of KEE manifolds of nonpositive Ricci curvature. When μ > 0,
such a classification would yield a class of manifolds containing the KEE manifolds.
Narrowing this class down then of course depends on notions of stability that are
a further challenging obstacle—more on that in §9.

Question 8.1 is, of course, too ambitious in the sense that even when all βi = 1
and M is smooth there is no complete classification, or list, of projective manifolds
satisfying (8.2), unless μ > 0 and n is small. In particular, when μ < 0, which is a
subset of the world of “general type” varieties, a classification is quite hopeless; in
§8.5 we will review what can still be said when n = 2. Thus, we will largely concen-
trate on the case μ > 0 and further restrict to the small angle regime where some
classification can be achieved, that furthermore has interesting geometric conse-
quences. The small angle, or asymptotically logarithmic, regime, can be thought of
as the other extreme from the smooth regime (βi = 1). In the next few subsections
we discuss some of its interesting properties.

8.1. Warm-up: classification of del Pezzo surfaces. Which compact
complex surfaces admit a Kähler metric of positive Ricci curvature? The following
basic classification result, together with the Calabi–Yau theorem gives a complete
list.

Theorem 8.2. Let S be a compact complex surface. Then c1(S) is ample if
and only if S is either P1 × P1, or otherwise P2 blown-up at at most 8 distinct
points, of which no three are collinear, no six lie on a conic, and no eight lie on a
cubic with one of the points being a double point.

Del Pezzo first described some of the eponymous surfaces in the ninteenth cen-
tury [82]; more precisely, he described the ones with up to six blown-up points, or, in
his language, surfaces of degree d = c21 embedded in Pd. In other words, the ones for
which −KM is very ample, i.e., for which the linear series |−KM | gives a projective
embedding; indeed, since −KM > 0, by Riemann–Roch dimH0(M,OM (−KM )) =
χ(−KM ) = χ(OM ) + c21 = 1 + c21. What are now known as del Pezzo surfaces are
the surfaces for which −KM is ample, i.e., those in the statement of Theorem 8.2.
By the Kodaira Embedding Theorem, those are the surfaces for which | −mKM |
gives a projective embedding for some m ∈ N. It is hard to trace precisely the
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SMOOTH AND SINGULAR KÄHLER–EINSTEIN METRICS 113

original discoverers of those remaining del Pezzo surfaces, let alone the first time
Theorem 8.2 was stated in this form in the literature, but the contributions of
Clebsch, Segre, Enriques, Nagata, among others, played a crucial role. We refer to
[11,50,74,91,104] for more references and historical notes.

This result is used, and generalized, in Theorem 8.10. We describe a proof,
closely following Hitchin [135] (see also, e.g., [91,112,267]). The detailed proof
serves to motivate later classification results, as well as to establish notation and
basic results that are useful later.

Proof. To start, one checks that indeed the surfaces in the statement are del
Pezzo. We concentrate on the converse.

Step 1. Let Ω ∈ H2(M,R) ∩H1,1

∂̄
. By Nakai’s criterion [43,153,192]

(8.3) Ω > 0 if and only if Ω2 > 0 and Ω.C > 0 for every curve C in S.

Thus, any blow-down π : S̃ → S of S̃ with c1(S̃) > 0 will also satisfy c1(S) > 0:
indeed, if E is the exceptional divisor of π, then E2 = degLE |E = −1 and [124, p.
185,187]

(8.4) KS̃ = π�KS + E.

Thus, c21(S) = c21(S̃) + 1 > 0. Additionally, if Σ is any holomorphic curve in S
then the associated cohomology class [Σ] (represented by the current of integration

along it), that by abuse of notation we still denote by Σ, satisfies Σ̃ + mE =

π�Σ, where Σ̃ := π−1(Σ \ E) denotes the proper transform of Σ, and where m is

the multiplicity of Σ̃ at the blow-up point. Since cup product is invariant under
birational transformations, KS .Σ = π�KS .π

�Σ = (KS̃−E).π�Σ = KS̃ .(Σ̃+mE) ≤
0. Here, we used the fact that any pulled-back class has zero intersection number
with the exceptional divisor.

It thus remains to classify all del Pezzos with no −1-curves, since by a clas-
sical theorem of Castelnuovo–Enriques [124, p. 476] there always exists such a
birational blow-down π contracting any given −1-curve. The goal is to show that
these “minimal del Pezzos” are precisely P2 and P1 × P1. To that end, one first
observes that S is rational, i.e., birational to P2. Indeed, by the Kodaira Vanish-
ing Theorem [124, p. 154], Hk(S,O(mKS)) = 0, k = 0, 1,m ∈ N. In particu-
lar, H0(S,OS(2KS)) = 0, and by Dolbeault’s theorem and Kodaira–Serre duality

H0,1

∂̄
∼= H1(S,OS) ∼= H1(S,OS(KS)). Consequently, by the Castelnuovo–Enriques

characterization S is rational [124, p. 536]. The classification of minimal rational
surfaces implies that these are precisely P2 and the Hirzebruch surfaces,

(8.5) Fm := P(O ⊕O(m)),

with m ∈ N0\{1}, the projectivization of the rank 2 bundle over P1 that is obtained
by the direct sum of the trivial bundle and the degree m bundle. (Note that
F0 = P1 × P1, while F1 is the blow-up of P2 at one point, hence is not minimal.)
Finally, observe that Fm,m ≥ 2 are not del Pezzo: indeed they contain a rational
non-singular curve of self-intersection −m, while by adjunction, any curve C on a
del Pezzo surface S satisfies C2 = 2gC − 2−KS .C > −2.

Step 2. Next, we classify the admissible blow-ups of P2 and P1 × P1. Since
the two-point blow-up of the former equals the one-point blow-up of the latter, we
may concentrate on P2. Since c21(P

2) = 9, by (8.4) and the relation following it, at
most 8 blow-ups are allowed, according to (8.3). Next, it remains to determine the
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allowable configurations of blow-ups. Suppose that k ≤ 8 points have been blown
up and that the resulting surface is not del Pezzo. Then by (8.3) this means that
there exists a curve C ⊂ S with C.KS ≥ 0. We may assume C is irreducible, since
at least one of its components will have nonnegative intersection number with KS .
Denote by π : S → P2 the blow-down map, by E ⊂ S the exceptional divisor, and
by {p1, . . . , pk} ⊂ P2 the blown-up points. We denote by q1, . . . , ql the singular
points of C, and let pk+i := π(qi), i = 1, . . . , l. We also let Σ = π(C) and write

E =
∑k

i=1 Ei, with π−1(pi) = Ei. Since π is an isomorphism outside E, Σ will
have multiplicity one everywhere except, possibly, at the points {pi} ∩ Σ, and we
denote each of these multiplicities by mi. Denote by d the degree of Σ. By the
genus formula for planar irreducible projective curves [124, p. 220, 505] the genus
of Σ equals gΣ = (d− 1)(d− 2)/2 precisely when Σ is smooth, and in general

(8.6) 2gΣ ≤ (d− 1)(d− 2)−
k+l∑
i=1

mi(mi − 1) ≤ (d− 1)(d− 2)−
k∑

i=1

mi(mi − 1).

Here the genus of a possibly singular irreducible curve is defined either as dimH1(Σ,
OΣ) [124, p. 494], or as the genus of its unique desingularization [124, p. 500]; in

particular, it is nonnegative. Letting m :=
∑k

i=1 mi, convexity of f(x) = x2 gives∑
m2

i /k ≥ (m/k)2. Combined with gΣ ≥ 0 this yields m2/k −m ≤ (d− 1)(d− 2),
hence

(8.7) 2m ≤ k +
√
k2 + 4k(d− 1)(d− 2).

Additionally, C = π�Σ−
∑k

i=1 miEi, and so by (8.4),

(8.8) 0 ≤ KS .C = (−π�3H + E).(π�Σ−
k∑

i=1

miEi) = −3d+m,

since Σ ∈ |dH|, where H → P2 is the hyperplane bundle. Here we are implicitly
assuming that the blown-up points are distinct, or in other words that we have
not blown up any point on the exceptional divisor of a previous blow-up. This
is justified by the observation that had we blown-up a point on a −1-curve, we
would obtain a −2-curve, contradicting the Fano assumption (recall the end of the
previous paragraph).

Thus, 3d ≤ m. Plugging this back into (8.7) and expanding the resulting in-
equality yields

(8.9) (9− k)d2 ≤ 2k.

It follows that (k, d) ∈ {(3, 1), (4, 1), (5, 1), (6, 1), (6, 2), (7, 1), (7, 2), (8, 1), (8, 2), (8, 3),
(8, 4)}. When d ∈ {1, 2} by (8.6) all mi must equal 1, thus equality holds in (8.6).
Thus, the cases {(k, 1) : k = 3, . . . , 8} correspond to Σ being a line passing through
three or more of the {pi}, and the cases {(k, 2) : k = 6, . . . , 8} correspond to Σ
being a smooth conic passing through six or more of the points. If d = 3 then
by (8.8) at least one mi equals 2, thus by (8.6) exactly one such mi exists. Thus,
(k, d) = (8, 3) and Σ is a singular rational cubic with a double point passing through
one of the blow-up points. Finally, the case (8, 4) is the only one that is excluded,
since it forces m ≥ 12, while the equation following (8.6), namely, m2/8 −m ≤ 6
implies m ≤ 12, thus m = 12. Now equality in the latter means precisely that
equality also occurs in

∑
m2

i /k ≥ (m/k)2. By strict convexity of f(x) = x2 this
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means that all the mi are equal; but since they are also all at least 2, this implies
m ≥ 16, a contradiction. �

8.2. Log Fano manifolds. The definition of log Fano manifolds goes back to
work of Maeda [166].

Definition 8.3. We say that the pair (M,D =
∑

Di) is log Fano if −KM−D
is ample.

In dimension 2, these are also called log del Pezzo surfaces (to avoid confu-
sion, we remark that some authors use this terminology to refer to rather different
objects). The motivation for the adjective “logarithmic”, according to Maeda, is
from the work of Iitaka on classification of open algebraic varieties where logarith-
mic differential forms are used to define invariants of the pair. The open variety
associated to (M,D) is the Zariski open set M \D.

Maeda posed the following problem.

Problem 8.4. Classify log Fano manifolds.

This problem has a beautiful inductive structure. Indeed, by the adjunc-
tion formula [124, p. 147], any component Di of D, or more precisely the pair
(Di,

∑
j �=i Di ∩Dj), is itself a log Fano manifold of one dimension lower, to wit

KDi
+
∑
j �=i

Dj |Di
= (KM +D)|Di

.

When n = 1, log Fanos consist precisely of (P1, {point}) (we always omit the case
of empty boundary, that in this dimension corresponds to (P1, ∅)). Thus, the first
step in Problem 8.4 should be a classification for n = 2. This was provided by
Maeda [166, §3.4].

Theorem 8.5. Log del Pezzo surfaces (S,C) are classified as follows:
(i) S ∼= P2, and C is a line in S,
(ii) S ∼= P2, and C = C1 + C2, where each Ci is a line in S.
(iii) S ∼= P2, and C is a smooth conic in S.
(iv) S ∼= Fn for any n � 0, and C is a smooth rational curve in S such that
C2 = −n (such curve is unique if n � 1).
(v) S ∼= Fn for any n � 0, and C = C1 + C2 where C1 is as in (iv) and C2 is a
smooth fiber (i.e., a smooth rational curve such that C2

2 = 0, C2.C1 = 1).
(vi) S ∼= F1, and C is a smooth rational curve such that C ∈ |C1+C2|, with C1, C2

as in (v).
(vii) S ∼= P1×P1, and C is a smooth rational curve in |H1 +H2| where H1, H2 are
lines in each copy of P1.

Building on this result and considerable more work, Maeda then tackles the
case n = 3. Much more recently, Fujita was able to obtain some results in higher
dimensions, especially for pairs with high log Fano index [113].

8.3. Asymptotically log Fano manifolds. In this section we finally get to
the case 0 < βi � 1, that generalizes both extremal cases βi = 1 and βi = 0 studied
in the last two sections.

Definition 8.6. We say that a pair (M,D) is (strongly) asymptotically log

Fano if the divisor −Kβ
M = −KM −

∑r
i=1(1− βi)Di is ample for (all) sufficiently

small (β1, . . . , βr) ∈ (0, 1]r.
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F F

Z1

Figure 7. A non-strongly asymptotically log del Pezzo pair (see
Example 8.7): F1 with boundary consisting of two fibers and the
−1-curve (the fibration structure of the surface F1 is indicated in
green, the boundary C (consisting of those three curves) in red).

Both of these classes (strongly asymptotically log Fano and asymptoticaly log
Fano) generalize the class of log Fanos since ampleness (of −KX −D) is an open
property. They also generalize the class of Fanos (at least in small dimensions,
see the discussion surrounding Problem 8.9), since if D is a smooth anticanonical
divisor in a Fano M , then (M,D) is strongly asymptotically log Fano.

The notion of strongly asymptotically log Fano coincides with that of asymptot-
icaly log Fano in the case r = 1, i.e., when D consists of a single smooth component.
However, they differ in general, as the following example demonstrates.

Example 8.7. (See Figure 7.) Let S = F1 (recall (8.5)) and C = C1+C2+C3

where C1, C2 ∈ |F | are both fibers and C3 = Z is the −1-curve. Note that −KS =

2Z+3F . Then −Kβ
S .Z = β1+β2−β3 and so (S,C) is not strongly asymptotically

log del Pezzo. However, one may verify that it is asymptotically log del Pezzo:
when β1+β2 > β3, the class −KS−(1−β1)C1−(1−β2)C2−(1−β3)C3 is positive.
Note this pair is the blow-up of the pair P2 with two lines at their intersection (the
pair II.1B in Figure 9 below).

We pose the following problem.

Problem 8.8. Classify the (strongly) asymptotically log del Pezzo surfaces and
Fano 3-folds.

In §8.4 below we explain the solution to this problem in the case of a smooth
divisor [60], where Problem 8.8 is solved more generally for strongly asymptotically
log del Pezzos. This generalizes Maeda’s result and the classical classification of del
Pezzo surfaces (Theorems 8.5 and 8.2). The general (i.e., not necessarily strongly)
case of surfaces, as well as the three dimensional case are open and challenging.

8.3.1. Comparison between the asymptotic and classical logarithmic regimes.
We end this subsection with a few comparisons between the log Fano and asymp-
totically log Fano regimes, emphasizing the flexibility in the asymptotic classes as
opposed to the rigidity of the class of log Fanos.

One point of similarity between both classes is that unlike Fano manifolds, for
neither logarithmic classes is the degree of the logarithmic anticanonical bundle
bounded uniformly for fixed dimension. E.g., when n = 2, K2

M ≤ 9 for del Pezzos,
while following the notation of Example 8.7, (Fm, Z) (see Theorem 8.5 (iv)) satisfies
(−KM −Z)2 = ((m+2)F +Z)2 = m+4. Thus, already in the log Fano class there
are infinitely many non-diffeomorphic pairs.

Aside from these properties though, these classes are quite different.
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First, the asymptotic notion is no longer inductive, in the sense that (Di, Di ∩
∪j �=iDj), is not necessarily itself asymptotically log Fano. In fact,

KDi
+
∑
j �=i

(1− βj)Dj |Di
= Kβ

M |Di
+ βiDi|Di

,

and the right hand side may fail to be negative. Perhaps the simplest example is the
pair (P2, smooth cubic curve), where the boundary is an elliptic curve, hence not
Fano. Thus, in every dimension one may encounter boundaries that were absent
from the classification in lower dimensions.

Second, while D is always connected in the classical setting [166, Lemma 2.4],
this is certainly not so in the asymptotic regime. As an example, consider M =
P1×P1 and D = D1+D2 a union of two disjoint lines in the same linear series, say,
Di ∈ |H1|. However, there is an upper bound on the number of disjoint components
D may have. The reason D is always connected in the non-asymptotic regime is
the standard logarithmic short exact sequence

0→ OM (−D)→ OM → OD → 0.

Note that H0(M,OM (−D)) = {0} since holomorphic functions on M vanishing
on D must be identically zero, as M is connected. Also, H1(M,OM (−D)) = {0}
since by Serre duality this vector space is isomorphic to H1(M,OM (KM +D)) =
{0}, by Kodaira Vanishing. Therefore, H0(M,OM ) ∼= H0(D,OD), and thus the
connectivity of D is ‘inherited’ from that of M .

Other more refined connectivity properties are also interesting to compare.
According to Maeda (op. cit.), when (M,D) is log Fano, D is always “strongly
connected,” meaning that any two components of D intersect. This follows im-
mediately from the inductive structure already mentioned. Indeed, this certainly
holds for n = 1. Suppose now that D1 intersects both D2 and D3. Then since
(D1,

∑r
j=2 D1∩Dj), is itself log Fano, then by induction (D2∩D1)∩(D3∩D1) �= ∅,

therefore also D2 ∩D3 �= ∅, as desired. Such strong connectivity again fails in the
asymptotic world. In fact, Example 8.7, or even simpler, the disconnected example
or the previous paragraph, or even (P1, 2 distinct points) (which are both strongly
asymptotically log Fano) provide instances of that.

Moreover, the number of components in the boundary of log Fanos is bounded
from above by the dimension (op. cit.): by strong connectivity any two components
intersect and thus all components have a common point. But the components cross
normally! There is no analogue for this property in the asymptotic regime. As we
will see, the number of boundary components can be arbitrary.

Finally, the class of asymptotically log Fano manifolds seems like a more natural
generalization of the class of Fano manifolds than the class of log Fanos. Indeed
the latter do contain the Fano manifolds as a subclass if one allows the case of
empty boundary. However the class of Fanos actually can be considered as a subset
of the asymptotically log Fanos, if one considers pairs (M,D) with M Fano and
D ∈ |−KM | a snc divisor, when such a divisor exists. As an aside, we mention that
this last existence problem is known to hold for all smooth Fano up to dimension
three (then even a smooth anticanonical divisor exists by the classification and a
theorem Shokurov [109,139,140,184,187,224,225]), and in general it falls under
the world of the Elephant conjectures going back to Iskovskih [36]. In fact, even
the existence of such a divisor is open, although examples show that, in general,
one needs to allow for worse singularities than snc [136].
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Problem 8.9. Determine whether an anticanonical divisor exists on a smooth
Fano manifold, and whether it has some regularity, at least in sufficiently low di-
mensions.

One approach to this problem that does not seem to have been tried so far
would be to use Geometric Measure Theory. Indeed, any (holomorphic) divisor
is automatically a minimal submanifold, in fact area minimizing in its homology
class by Wirtinger’s inequality [110, §5.4.19]. In other words, the Kähler form
provides for a calibration in the sense of Harvey–Lawson [132]. The question is
then whether an area minimizing representative of the homology class [−KM ] can
be found that is also a complex subvariety, and if so whether it has some regularity
beyond that provided by general results of GMT. In view of [182] this seems to be
a delicate question. In the real setting, a famous result says that hypersurfaces can
have singularities only in codimension 7 or higher [226, Theorem 37.7]. Perhaps
one approach to Problem 8.9 would be to develop a regularity theory for complex
hypersurfaces. The rigidity of the holomorphic setting might just be enough for
such a theory, which in the general real codimension greater than one setting breaks
down, of course aside from Almgren’s fundamental result saying that singularities
then occur in real codimension two or higher [1].

8.4. Classification of strongly asymptotically log del Pezzo surfaces.
The following result gives a complete classification of strongly asymptotically log
del Pezzo surfaces with smooth connected boundary.

Theorem 8.10. Let S be a smooth surface (the surface), and let C be an
irreducible smooth curve on S (the boundary curve). Then −KS − (1 − β)C is
ample for all sufficiently small β > 0 if and only if S and C can be described as
follows:

(I.1A) S ∼= P2, and C is a smooth cubic elliptic curve,
(I.1B) S ∼= P2, and C is a smooth conic,
(I.1C) S ∼= P2, and C is a line,
(I.2.n) S ∼= Fn for any n ≥ 0, and C = Zn,
(I.3A) S ∼= F1, and C ∈ |2(Z1 + F )|,
(I.3B) S ∼= F1, and C ∈ |Z1 + F |,
(I.4A) S ∼= P1 × P1, and C is a smooth elliptic curve of bi-degree (2, 2),
(I.4B) S ∼= P1 × P1, and C is a smooth rational curve of bi-degree (2, 1),
(I.4C) S ∼= P1 × P1, and C is a smooth rational curve of bi-degree (1, 1),
(I.5.m) S is a blow-up of the surface in (I.1A) at m ≤ 8 distinct points on the

boundary curve such that −KS is ample, i.e., S is a del Pezzo surface, and
C is the proper transform of the boundary curve in (I.1A), i.e., C ∈ |−KS |,

(I.6B.m) S is a blow-up of the surface in (I.1B) at m ≥ 1 distinct points on the
boundary curve, and C is the proper transform of the boundary curve in
(I.1B),

(I.6C.m) S is a blow-up of the surface in (I.1C) at m ≥ 1 distinct points on the
boundary curve, and C is the proper transform of the boundary curve in
(I.1C),

(I.7.n.m) S is a blow-up of the surface in (I.2.n) at m ≥ 1 distinct points on the
boundary curve, and C is the proper transform of the boundary curve in
(I.2),
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I.1A I.1B I.1C

F

Zn

I.2.n

F

Z1

I.3A

F

Z1

I.3B I.4A

I.4B I.4C

Figure 8. Strongly asymptotically log del Pezzo surfaces with
smooth connected boundary: the minimal pairs (the surface is in-
dicated in green, the boundary in red, the fibration structure, when
one exists, is indicated by the dashed green lines). The remain-
ing pairs listed in Theorem 8.10 are obtained by blowing-up along
the boundary curves as follows: I.1A as described in Theorem 8.2;
I.1B, I.1C, I.2.n, I.3B, and I.4C at any number of distinct points;
I.4B at any number of distinct point with no two on a single (0, 1)-
fiber. Note that I.4A and I.3A may also be blown-up but these
cases are covered by blow-ups of I.1A and I.4B, respectively.

(I.8B.m) S is a blow-up of the surface in (I.3B) at m ≥ 1 distinct points on the
boundary curve, and C is the proper transform of the boundary curve in
(I.3B),

(I.9B.m) S is a blow-up of the surface in (I.4B) at m ≥ 1 distinct points on the
boundary curve with no two of them on a single curve of bi-degree (0, 1),
and C is the proper transform of the boundary curve in (I.4B),

(I.9C.m) S is a blow-up of the surface in (I.4C) at m ≥ 1 distinct points on the
boundary curve, and C is the proper transform of the boundary curve in
(I.4C).

The proof appears in [60]. We sketch the main steps. Figure 1 illustrates the
pairs graphically.

One starts by checking directly that indeed all the pairs in the list above are
asymptotically log Fano. Let us concentrate on the reverse implication.

First, it follows from the asymptotic assumption that −KS − C is nef. Also,
−KS is big and nef, since it is a linear combination of an ample class −KS−(1−β)C
and an effective class (1− β)C. The former implies that the genus of C is at most
one. The latter, together with a version of Nadel Vanishing Theorem and a theorem
of Castelnuovo, imply that S is rational. This further implies that if C is elliptic
then C ∈ | − KS |, and S is del Pezzo, i.e., is one of (1A),(4A), or (5m). On
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II.1A II.1B

F

Zn

II.2A.n

F

Zn

II.2B.n

F

Zn

II.2C.n

F

Zn

II.3 II.4A II.4B

III

III.2A

F

Zn

III.3n IV

Figure 9. Strongly asymptotically log del Pezzo surfaces with
general snc boundary: the minimal pairs. Essentially, these pairs
are obtained by “degenerating” the elliptic/rational boundaries of
Figure 8 into cycles/chains of rational curves.

the other hand, if C is rational, then it must “trap” all the negative curvature of
−KS . More precisely, the only curve that can intersect −KS nonpositively is C,
and that happens if and only if C2 ≤ −2 (compare to the end of Step 1 in the
proof of Theorem 8.2). Thus, all other negative self-intersection curves must be
−1-curves. Furthermore, these curves must be either disjoint from C, or intersect
it transversally at exactly one point. This motivates the following definition.

Definition 8.11. We say that the pair (S,C) is minimal if there exist no
smooth irreducible rational −1-curve E �= C on the surface S such that E ∩C �= ∅.

The importance of this definition is in the following.

Lemma 8.12. Suppose that (S,C) is non-minimal asymptotically log del Pezzo
and let E be as in Definition 8.11. Then there exists a birational morphism π : S →
s such that s is a smooth surface, π(E) is a point, the morphism π induces an iso-
morphism S\E ∼= s\π(E), the curve π(C) is smooth, and (s, π(C)) is asymptotically
log del Pezzo.

Thus, it remains to classify all minimal pairs. First, one proves that minimality
implies the rank of the Picard group of S is at most two. Second, one shows,
using the classical theory of rational surfaces, that a minimal pair with this rank
restriction must be (I.1B), (I.1C), (I.2.n), (I.3A), (I.3B), (I.4B), or (I.4C), and a
non-minimal one must equal (I.6B.1) or (I.6C.1). This concludes the proof since
(I.6B.m), (I.6C.m), with m ≥ 2, and (I.7.n.m),(I.8B.m),(I.9B.m), (I.9C.m), with
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m ≥ 1, are precisely the only blow-ups of minimal pairs that are still asymptotically
log del Pezzo.

Building on this, the case of a snc boundary is handled in [60]. Essentially,
aside from a few cases of disconnected boundary, the only new boundaries allowed
beyond the smooth connected boundary case are boundaries that can be considered
as “degenerations” of smooth ones. For instance, the smooth elliptic boundary of
(I.1A) can be replaced by a triangle of lines, or a conic and a line; the elliptic
boundary of (I.4A) can similarly break up to no more than 4 components. However,
an additional complication in the snc case is that a −1-curve in a non-minimal pair
could be a component of the boundary. Luckily, one can show that such a curve
must be at the ‘tail’: it cannot intersect two boundary components. Thanks to
this, paying attention to the combinatorical structure of the boundary, the main
idea from the proof of Theorem 8.10 carries over to give a classification of strongly
asymptotically log del Pezzos [60]. We list these pairs in Figures 9–10, and refer to
[60] for their precise construction.

8.5. The negative case. In this subsection we assume that μ < 0. We fix
M and seek necessary and sufficient restrictions on a snc divisor D ⊂ M in order
to be an admissible boundary for all small enough β.

Definition 8.13. We say that a pair (M,D) is (strongly) asymptotically log

general type if the divisor Kβ
M = KM+

∑r
i=1(1−βi)Di is ample for (all) sufficiently

small (β1, . . . , βr) ∈ (0, 1]r.

The following theorem comes close to describing the (strongly) asymptotically
log general type surfaces as a subclass of the class of log general type minimal
surfaces. The proof we describe is due to Di Cerbo [87] (who showed (ii) ⇔ (iv)),
with slight modifications to include also the asymptotic classes defined above.

Proposition 8.14. Let S be projective surface and C ⊂ S a snc curve such
that KS + C is big and nef. Consider the following statements:
(i) (S,C) is strongly asymptotically log general type.

(ii) Kβ
S > 0 for β = β1(1, . . . , 1) for 0 < β1 � 1.

(iii) (S,C) is asymptotically log general type.
(iv) Every rational −1-curve not contained in C intersects C at least in two points,
and any rational −2-curve F satisfies F �⊂ S \ C. Every rational component Ci of
C intersects ∪j �=iCj at least in two points, and, if C2

i ∈ {−1,−2} then at least in
three points.
(v) Every −1-curve not contained in C intersects C at least in two points, and
any rational −2-curve F satisfies F �⊂ S \ C. Every rational component Ci of C
intersects ∪j �=iCj at least in two points.
Then (i) ⇒ (ii) ⇔ (iv) ⇒ (iii) ⇒ (v).

Note that, similarly to the last section, the assumption that KS +C is big and
nef is of course a consequence of (S,C) being asymptotically log general type.

Proof. Suppose first that (S,C) is (strongly) asymptotically log canonical.

Let F be a holomorphic rational curve. Then, Kβ
S .F > 0, i.e.,

(8.10)

C.F > −KS .F +
∑

βiCi.F = 2− 2gF + F 2 +
∑

βiCi.F = 2 + F 2 +
∑

βiCi.F.
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Figure 10. Strongly asymptotically log del Pezzo surfaces with
general snc boundary: the remaining cases obtained by blowing-
up the minimal pairs in Figure 9. A circle corresponds to a point
that may not be blown-up. An indication “≤ k” next to a curve
means that no more than k distinct points may be blown-up on
that curve. In III.3.n no more than one point may be blown up on
any single fiber and none on the fiber belonging to the boundary.

Thus (C−F ).F ≥ 2 which proves the second part of (v) by letting F = Ci. To prove
the second part of (iv), suppose now that we are in the strong regime. By putting
βi = β1 � 1, then (1 − β1)C.F > 2 + F 2, i.e., (1 − β1)F.(C − F ) > 2 + β1F

2.
If F 2 ∈ {−1,−2} this then majorizes 2 − 2β1, so F.(C − F ) > 2 proving the
second part of (iv). Finally, suppose now that F 2 = −2 (but not necessarily in
the strong regime). Then, F 2 < −2 + F.

∑
(1 − βi)Ci. Thus, if F ⊂ S \ C so

that F.Ci = 0 for each i, then necessarily F 2 < −2, contradicting F 2 = −2. To
prove the remainder of the first part of (iv) and (v), let F 2 = −1. If F �= Ci for
each i, then F.Ci ≥ 0, thus (8.10) implies C.F > 1. In the strong regime the same
inequality gives C.F > (1− β1)

−1 > 1 without further assumption on F .

Suppose now that (iv) hold. As (KS + C)2 > 0 also (Kβ
S )

2 > 0 for all small

enough |β|. By Nakai’s criterion (8.3), it remains to show that Kβ
S intersects pos-

itively with every irreducible curve in S. By taking |β| sufficiently small, this is
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certainly the case for every curve Z such that (KS +C).Z > 0. Thus, suppose that

(KS + C).Z = 0. Note that the cup product Q on H1,1

∂̄
has exactly one positive

eigenvalue [124, p. 126]. Thus if Q(x, x) > 0, Q(x, y) = 0 for some x, y ∈ H1,1

∂̄
then Q(y, y) = Q(x ± y, x ± y) − Q(x, x) ∓ 2Q(x, y) = Q(x + y, x + y) − Q(x, x),
so necessarily Q(y, y) < 0, otherwise Q(ax + by, ax + by) > 0, for all a, b ∈ R,
and Q would have at least two positive eigenvalues. Thus, Z2 < 0. Now, by
our assumption on Z, (C − Z).Z = 2 − 2gZ (here gZ denotes the genus of the
desingularization of Z). Therefore, gZ ≥ 1 implies C.Z ≤ Z2 < 0. But then

Kβ
S .Z = (KS + C).Z −

∑
βiCi.Z = −

∑
βiCi.Z, which is necessarily positive for

certain β in any neighborhood of 0 ∈ Rr
+ \ {0} (for instance, if βi = β1). On the

other hand, suppose gZ = 0. As we just saw, we may suppose that C.Z ≥ 0;
since C.Z = 2 + Z2, this implies Z2 ∈ {−1,−2}. If Z2 = −2, so C.Z = 0, then
either Z ⊂ S \ C—but this is precluded by the first part of (iv)—or, Z �⊂ S \ C,
so necessarily Z = Ci for some i, but then C.Z = (Z +

∑
j �=i Cj).Z ≥ −2 + 3 ≥ 1,

contradicting the second part of (iv). If Z2 = −1 then C.Z = 1. Thus, Z �⊂ S \ C.
If Z �= Ci for each i we obtain a contradiction to the first part of (iv). If Z = Ci

for some i, then C.Z = (Z +
∑

j �=iCj).Z ≥ −1 + 3 ≥ 2, a contradiction. �

8.6. Uniform bounds. A natural question is whether there exist uniform
bounds on the asymptotic range of β; and if so, what do they depend on? This was
first addressed by Di Cerbo–Di Cerbo [86] in the case β = β1(1, . . . , 1), and this
subsection is mostly a review of these results. As can be expected, the results are
more complete in the negative regime.

8.6.1. Strongly asymptotically log general type regime. Perhaps the simplest ex-
ample of an asymptotically log general type pair is (Pn, D) with D ∈ |O(n + 2)|.
Then for every β in the range (0, 1

n+2 ) K
β
M is still positive. As shown by Di Cerbo–

Di Cerbo [86], this is always the case when restricting to the ray β = β1(1, . . . , 1).

Proposition 8.15. Suppose that (M,D) is such that Kβ
M > 0 for β =

β1(1, . . . , 1) for some 0 < β1 � 1 (recall ( 8.1)). Then the same is true for
0 < β1 < 1

n+2 .

Proof. First, recall the following fact:

(8.11) if C is an irreducible curve such that (KM +D).C = 0 then KM .C > 0.

In fact, for some t < 1, (KM + tD).C > 0, and since D.C = −KM .C we conclude
0 < (KM + tD).C = (1− t)KM .C.

Second, KM + tD is nef for every t ∈ [n+1
n+2 , 1]. This implies the Proposition,

since then for any t ∈ (n+1
n+2 , 1], KM+tD is a convex combination of an ample divisor

and a nef divisor, hence positive by Kleiman’s criterion. We now prove the nefness
claim. It suffices to show that if C is an irreducible curve with (KM + D).C > 0
then (KM + tD).C ≥ 0; indeed, this is already true by the first paragraph if
(KM +D).C = 0 (and since KM +D is nef as a limit of ample divisors, it is always
true that (KM +D).C ≥ 0). Now, we decompose C according to the cone theorem
(see, e.g., [86])

(8.12) C ∼Z

r∑
i=1

aiCi + F, ai > 0, F.KX ≥ 0, Ci.KX ∈ (−n− 1, 0).
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Thus, once again using that KM +D is nef,

(KM + (n+ 1)(KM +D)).C = (KM + (n+ 1)(KM +D)).
( r∑

i=1

aiCi + F
)

≥ −(n+ 1)
∑

ai + (n+ 1)
∑

aiCi.(KM +D) ≥ 0,

since Ci.(KM + D) ≥ 1 as otherwise, by nefness of KM + D, Ci.(KM + D) = 0
which would imply KM .Ci = 0 by (8.11), contradicting (8.12). Thus, KM + tD is
nef for every t ∈ [n+1

n+2 , 1]. �

Remark 8.16. In [86] it is shown that (8.11) also implies that KM +(1−β1)D
is ample for some 0 < β1 � 1 in the case KM +D is big.

8.6.2. Log Fano regime. Theorem 8.10 implies that an analogue of Proposition
8.15 in the asymptotically log Fano regime is false, and the correct analogue remains
to be found. In the more restrictive log Fano regime (see §8.2), Di Cerbo–Di Cerbo
prove an interesting first result in this direction [86], based on deep results from
algebraic geometry. It is an a priori bound on the asymptotic regime depending
only on the degree of −KM −D and n.

Proposition 8.17. Suppose (M,D) is log Fano. Then −KM − (1 − β1)D is
positive for every β1 ∈ [0, βmax) with βmax depending only on n and (−KM −D)n.

9. The logarithmic Calabi problem

For simplicity, in what follows we always suppose the boundary is smooth
and connected and that the dimension is two. We refer to [60] for more general
considerations.

The preceding section sets the stage for the asymptotic logarithmic Calabi
problem:

Problem 9.1. Determine which (strongly) asymptotically logarithmic Fano
manifolds admit KEE metrics for sufficiently small β.

In dimension two, the smooth version of Calabi’s problem was solved by Tian
in 1990 who showed that among the list of Theorem 8.2, only P2 blown-up at one
or two distinct points do not admit KE metrics [240]. In light of Theorem 8.10 it
is very natural and tempting to hope for a counterpart for strongly asymptotically
log del Pezzo surfaces. The formulation conjectured in [60] is the following:

Conjecture 9.2. Suppose that (S,C) is strongly asymptotically log del Pezzo
with C smooth and irreducible. Then S admits KEE metrics with angle β along C
for all sufficiently small β if and only if (KS + C)2 = 0.

In Tian’s solution of the smooth case the vanishing of the Futaki invariant pro-
vided a necessary and sufficient condition for existence. More generally, since the
work of Hitchin, Kobayashi, and many others, a standard condition for the exis-
tence of canonical metrics that can be described as zeros of an infinite-dimensional
moment map is some sort of ‘stability’ condition. How, then, does Conjecture 9.2
fit into this scheme?
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9.1. First motivation: positivity classification and Calabi–Yau fibra-
tions. It turns out to be quite useful to re-classify the pairs appearing in Theorem
8.10 according to the positivity of the logarithmic anticanonical bundle −KS − C.
We distinguish between four mutually exclusive classes. Class (ℵ): S is del Pezzo
and C ∼ −KS ; class (�): C �∼ −KS and (KS +C)2 = 0; class :(ג) −KS −C is big
but not ample; class (�): −KS − C is ample.

Theorem 9.3. The asymptotically log del Pezzo pairs appearing in Theorem
8.10 are classified according to the positivity properties (ℵ), (�), ,(ג) and (�) as
follows:

(ℵ) (S,C) is one of (I.1A), (I.4A), or (I.5.m).
(�) (S,C) is one of (I.3A), (I.4B), or (I.9B.m).
(ג) (S,C) is one of (I.6B.m), (I.6C.m), (I.7.n.m), (I.8B.m), or (I.9C.m).
(�) (S,C) is one of (I.1B), (I.1C), (I.3B), (I.2.n), or (I.4C).

This list nicely puts the discussion of §8.1–8.2 in perspective. Class (�) is
Maeda’s class of log del Pezzo surfaces [166], while class (ℵ) is the classical class
of del Pezzo surfaces together with the information of a simple normal crossing
anticanonical curve. The classes (�) and (ג) are new.

The next result is a structure result for surfaces of class (�) [60]. It is slightly
stronger than what Kawamata–Shokurov basepoint freeness would give: there the
relevant linear system giving a morphism is | − lKS − lC|, for some l ∈ N.

Proposition 9.4. If (S,C) is of class (�), then the linear system | −KS −C|
is free from base points and gives a morphism S → P1 whose general fiber is P1,
and every reducible fiber consists of exactly two components, each a P1.

Thus, these surfaces are conic bundles, and the boundary C intersects each
generic fiber at two points, whose fiber complement is a cylinder! It is therefore
tempting to conjecture:

Conjecture 9.5. Let (S,C, ωβ) be KEE pairs of class (ℵ) or (�). Then
(S,C, ωβ) converges in an appropriate sense to a a generalized KE metric ω∞ on
S \ C as β tends to zero. In particular, ω∞ is a Calabi–Yau metric in case (ℵ),
and a cylinder along each generic fiber in case (�).

This conjecture is itself a generalization of a folklore conjecture in Kähler ge-
ometry saying that S \ C equipped with the Tian–Yau metric [253] should be a
limit of KEE metrics on (S,C) when S is of class (ℵ) (see, e.g., [174, p. 9], [102, p.
76]).

This gives strong motivation for the ‘if’ part of Conjecture 9.2 because it sug-
gests what the small-angle KEE metrics could be considered as a perturbation of
the complete Calabi–Yau metrics on the complement of C. It also motivates the
‘only if’ part: then there is no good limit, as the limit class is ‘too’ positive, which
should morally preclude the existence of a smooth non-compact complete metric
on it (having Myers’ theorem in mind).

9.2. Second motivation: asymptotic log canonical thresholds. Perhaps
further evidence for Conjecture 9.2 is given by the following result.
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Theorem 9.6. Assume (S,C) is asymptotically log del Pezzo with C smooth
and irreducible. Then

lim
β→0+

α(S, (1− β)C) =

⎧⎪⎨⎪⎩
1 class (ℵ),
1/2 class (�),

0 class (ג) or (�)

The result for class (ℵ) is shown by Berman [18], and the remaining cases are
shown in [60]. Note that 0, 1/2 and 1 are the Tian invariants of Pn, n →∞,P1, and
P0, respectively. It is then tempting to think of 1/2 as the Tian invariant of the
generic rational fiber of Proposition 9.4, thus suggesting existence of approximate
conic metrics on the football fibers, who should tend to cylinders in the limit. On
the other hand, the smallness of the log canonical threshold for classes (ג) and (�)
suggests non-existence.

9.3. Third motivation: explicit computations. Tian’s 1990 result in the
smooth regime mentioned earlier can also be phrased equivalently by saying that
a del Pezzo surface admits a KE metric if and only if its automorphism group is
reductive (a simplification of Tian’s original proof has been obtained by the work of
Cheltsov [58] and Shi [223], see also Odaka–Spotti–Sun [193], and the expository
article [257]). Given the logarithmic version of Matsushima’s criterion (Theorem
4.7), it is tempting to check how far reductivity gets us in the asymptotic regime.
Some explicit computations give [60]:

Proposition 9.7. The automorphism groups of all pairs of class (ℵ) and (�)
are reductive. The pairs of classes (ג) and (�) that have non-reductive automor-
phism groups, and hence admit no KEE metrics, are: (I.1C), (I.2.n) with any n ≥ 0,
(I.6C.m) with any m ≥ 1, (I.7.n.m) with any n ≥ 0 and m ≥ 1, (I.6B.1), (I.8B.1)
and (I.9C.1).

Thus, Matsushima’s criterion supports Conjecture 9.2 but does not solve the
problem in the singular setting.

Another tool is Tian’s criterion for existence of KEE metrics, which involves
calculating log canonical threshold, and is especially useful in the presence of large
finite symmetries. Using such tools, the following KEE metrics are constructed [60]
on surfaces of class (�):

Theorem 9.8. There exist strongly asymptotically log del Pezzo pairs of type
(I.3A), (I.4B), and (I.9B.5) that admit KEE metrics for all sufficiently small β.

An in-depth study of log canonical thresholds on pairs of class (ℵ) was carried
out by Mart́ınez-Garćıa [170, §4] and Cheltsov–Mart́ınez-Garćıa [59] whose results
give lower bounds on how large β can be taken (see also [60] for some weaker bounds
that hold in all dimensions). In fact, their results show that the threshold depends
on the representative chosen in | −KS |, and, similarly, examples of Székelyhidi
[233] show the maximal allowed β might as well. Conjecture 9.2 predicts that such
dependence does not appear in the asymptotic regime.

In work in progress [61], the ‘only if’ part of Conjecture 9.2 is verified by using
techniques adapted from work of Ross–Thomas on slope stability, motivated in part
by work of Li–Sun [157] that proved non-existence in the small angle regime for
(I.1B), (I.3B), and (I.4C).
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SMOOTH AND SINGULAR KÄHLER–EINSTEIN METRICS 131
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