CentPack Logo Center for Scientific Computation and Mathematical Modeling logo: Centpack example output


-- CENTRAL STATION --

A collection of references on

High-Resolution Non-Oscillatory Central Schemes





Second-order central schemes in one-space dimension

Back to Top
  • H. Nessyahu & E. Tadmor (1990) [pdf file]
    Non-oscillatory central differencing for hyperbolic conservation laws
    Journal of Computational Physics 87, 1990, 408-463.

  • G.-S. Jiang, D. Levy, C.-T. Lin, S. Osher & E. Tadmor (1998) [pdf file]
    High-resolution non-oscillatory central schemes with non-staggered grids for hyperbolic conservation laws
    SIAM Journal on Numerical Analysis 35, 1998, 2147-2168.

  • A. Kurganov & E. Tadmor (2000) [pdf file]
    New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations
    Journal of Computational Physics 160, 2000, 214-282.

  • A. Kurganov & G. Petrova (2000) [pdf file]
    Central schemes and contact discontinuities
    Mathematical Modelling and Numerical Analysis 34, 2000, 1259-1275.

  • Riccardo Fazio (2003) [pdf file]
    Comparison of two conservative schemes for hyperbolic interface problems
    "Numerical Mathematics and Advanced Applications" Proceddings of ENUMATH held in Ischia, July, 2001
    (F. Brezzi, A. Buffa e A. Murli, eds), Springer-Italia, Milano, 2003, 85-93.

  • K.-A. Lie & S. Noelle (2003) [pdf file]
    On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws
    SIAM Journal on Scientific Computation 24, 2003, 1157-1174.

  • C.-T. Lin (2003) [pdf file]
    New high-resolution central-upwind scehmes for nonlinear hyprbolic conservation laws
    "Hyperbolic Problems: Theory, Numerics, Applications",
    Proceedings of the 9th international conference held at CalTech, Mar. 2002, (T. Hou & E. Tadmor eds.), Springer, 2003, 705-716.

  • M. Fortin & A. S. Mounim (2005) [pdf file]
    Mixed and hybrid finite-element methods for concevtion-diffusion equations and their relationships with finite volume
    Calcolo 42, 2005, 1-30.

  • M. Breuss (2005) [pdf file]
    An analysis of the influence of data extrema on some first and second order central approximations of hyperbolic conservation laws
    Mathematical Modelling and Numerical Analysis 39, 2005, 965-994.

  • L. F. Shampine (2005) [pdf file]
    Solving hyperbolic PDEs in MATLAB
    Applied Numerical Analysis & Computational Mathematics 2(3), 2005, 346-358.

  • S. Konyagin, B. Popov & O. Trifonov (2005) [pdf file]
    On the convergence of minmod-type schemes
    SIAM J. on Numerical Analysis 42, 2005, 1978-1997.

  • F. Cavalli, G. Naldi, G. Puppo, & M. Semplice (2006) [pdf file]
    A comparison between relaxation and Kurganov-Tadmor scheme
    Mathematics in Industry, 1, (Progress in Industrial Mathematics at ECMI 2006, II) 12, 2006, 236-240.

  • B. Popov & O. Trifonov (2006) [pdf file]
    One sided stability and convergence of the Nessyahu-Tadmor scheme
    Numerische Mathematik 104, 2006, 539-559.

  • S. Serna (2009) [pdf file]
    A characteristic-based nonconvex entropy-fix upwind scheme for the ideal magnetohydrodynamic equations
    Journal of Computational Physics 228(11), 2009, 4232-4247.

  • Orhan Mehmetoglu & Bojan Popov (2011) [pdf file]
    Maximum principle and convergence of central schemes based on slope limiters
    Mathematics of Computation 2011.

  • Ying Wang & Chiu-Yen Kao (2013) [pdf file]
    Central schemes for the modified Buckley-Leverett equation
    Journal of Computational Science 4(12), 2013, 12-23.

  • P. P. Osipov & R. R. Nasyrov (2023) [pdf file]
    Comparison of the MacCormack's and the Kurganov-Tadmor's Schemes for Sod's Problem
    Lobachevskii Journal of Mathematics 44(5), 2023, 1785-1788.

  • R.Yan, W. Tong & G. Che (2023) [pdf file]
    An efficient invariant-region-preserving central scheme for hyperbolic conservation laws
    Applied Mathematics and Computations 436, 2023, 127500.


Third-and higher-order central schemes in one-space dimension

Back to Top
  • X-D. Liu & E. Tadmor (1998) [pdf file]
    Third order nonoscillatory central scheme for hyperbolic conservation laws
    Numerische Mathematik 79, 1998, 397-425.

  • F. Bianco, G. Puppo & G. Russo (1999) [pdf file]
    High order central schemes for hyperbolic systems of conservation laws
    SIAM Journal on Scientific Computing 21, 1999, 294-322.

  • D. Levy, G. Puppo & G. Russo (1999) [pdf file]
    Central WENO schemes for hyperbolic systems of conservation laws
    Mathematical Modelling and Numerical Analysis 33, 1999, 547-571.

  • F. Bianco, G. Puppo & G. Russo (1999) [pdf file]
    High order central schemes for hyperblic systems of conservation laws
    "Hyperbolic Problems: Theory, Numerics, Applications", (Proceedings of the 7th international conference held in Zurich, Feb. 1998 (M. Fey and R. Jeltsch, eds.), International series in Numerical Mathematics) 129, 1999, 55-64.

  • D. Levy, G. Puppo & G. Russo (2000) [pdf file]
    On the behavior of the total variation in CWENO methods for conservation laws
    Applied Numerical Mathematics 33, 2000, 407-414.

  • A. Kurganov & D. Levy (2000) [pdf file]
    A third-order semi-discrete central scheme for conservation laws and convection-diffusion equation
    SIAM Journal on Scientific Computing 22, 2000, 1461-1488.

  • G. Puppo (2002) [pdf file]
    Numerical entropy production on shocks and smooth transitions
    Journal of Scientific Computing 17, 2002, 263-271.

  • J. Qiu & C.-W. Shu (2002) [pdf file]
    On the construction, comparison, and local characteristic decompositions for high order central WENO schemes
    Journal of Computational Physics 183, 2002, 187-209.

  • E. Tadmor & J. Tanner (2003) [pdf file]
    An adaptive order Godunov type central scheme
    "Hyperbolic Problems: Theory, Numerics, Applications",
    Proceedings of the 9th international conference held at CalTech, Mar. 2002, (T. Hou & E. Tadmor eds.) Springer, 2003, 871-880.

  • R. Naidoo & S. Baboolal (2004) [pdf file]
    Application of the KurganovLevy semi-discrete numerical scheme to hyperbolic problems with nonlinear source terms
    Future Generation Computer Systems 20(3), 2004, 465-473.

  • A. Balaguer & C. Conde (2005) [pdf file]
    Fourth-Order Nonoscillatory Upwind and Central Schemes for Hyperbolic Conservation Laws
    SIAM Journal on Numerical Analysis 43(2), 2005, 455-473.

  • Youngsoo Ha & Yong Jung Kim (2006) [pdf file]
    Explicit solutions to a convection-reaction equation and defects of numerical schemes
    Journal of Computational Physics 220(1), 2006, 511-531.

  • Y. H. Zahran (2006) [pdf file]
    A centgral WENO-TVD scheme for hyperbolic conservation laws
    Novi Sad J. Math. 36(2), 2006, 25-42.

  • Arshad Ahmud Iqbal Peer, Ashvin Gopaul, Muhammad Zaid Dauhoo, & Muddun Bhuruth (2008) [pdf file]
    A new fourth-order non-oscillatory central scheme for hyperbolic conservation laws
    Applied Numerical Mathematics 58, 2008, 674-688.

  • M. Dehghan & R. Jazlanian (2010) [pdf file]
    A fourth-order central Runge-Kutta scheme for hyperbolic conservation laws
    Numerical Methods for Partial Differential Equations 26, 2010, 1675-1692.

  • M. Dehghan & R. Jazlanian (2011) [pdf file]
    On the total variation of a third-order semi-discrete central scheme for 1D conservation laws
    Journal of Vibration and Control "17(9), 2011, 1348-1358.

  • Mehdi Dehghan & Rooholah Jazlanian (2011) [pdf file]
    A high-order non-oscillatory central scheme with non-staggered grids for hyperbolic conservation laws
    Computer Physics Communications 182(6), 2011, 1284-1294.

  • Arshad Ahmud Iqbal Peer, Désiré Yannick Tangman & Muddun Bhuruth (2013) [pdf file]
    A hybrid ENO reconstruction with limiters for systems of hyperbolic conservation laws
    Mathematical Scieneces 7(1), 2013, Article 15.

  • Oliver Kolb (2014) [pdf file]
    On the full and global accuracy of a compact third order WENO scheme
    SIAM J. Numer. Analysis 52(5), 2014, 2335-2355.


Non oscillatory central schemes in several space dimensions

Back to Top
  • G.-S. Jiang & E. Tadmor (1998) [pdf file]
    Non-oscillatory central schemes for multidimensional hyperbolic conservation laws
    SIAM Journal on Scientific Computing 19, 1998, 1892-1917.

  • D. Levy (1998) [ps.gz file]
    Third-order 2D Central Schemes for Hyperbolic Conservation Laws
    INRIA School on Hyperbolic Systems Vol. I, 1998, 489-504..

  • T. Katsaounis & D. Levy (1999) [pdf file]
    A modified structured central scheme for 2D hyperbolic conservation laws
    Applied Mathematics Letters 12, 1999, 89-96.

  • D. Levy, G. Puppo & G. Russo (2000) [pdf file]
    A third order central WENO scheme for 2D conservation laws
    Applied Numerical Mathematics 33, 2000, 415-421.

  • D. Levy, G. Puppo & G. Russo (2000) [pdf file]
    Compact central WENO schemes for multidimensional conservation laws
    SIAM Journal on Scientific Computing 22, 2000, 656-672.

  • W. Rosenbaum, M. Rumpf & S. Noelle (2000) [ps.gz file]
    An adaptive staggered scheme for conservation laws
    "Hyperbolic Problems: Theory, Numerics, Applications",
    Proceedings of the 8th international conference held in Magdeburg, Germany, February, 2000.

  • A. Kurganov & G. Petrova (2001) [pdf file]
    A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems
    Numerische Mathematik 88, 2001, 683-729.

  • A. Kurganov, S. Noelle & G. Petrova (2001) [pdf file]
    Semi-discrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations
    SIAM Journal on Scientific Computing 23, 2001, 707-740.

  • K.A. Lie & S. Noelle (2001) [pdf file]
    A naive implementation of ACM in nonoscillatory central difference schemes for 2D Euler equations
    "Progress in Industrial Mathematics at ECMI 2000"
    (M. Anile, V. Capasso, and A. Greco, eds.) Mathematics in Industry, vol. 1, 2001, 318-324.

  • D. Levy, G. Puppo & G. Russo (2002) [pdf file]
    A fourth-order central WENO scheme for multi-dimensional hyperbolic systems of conservation laws
    SIAM Journal on Scientific Computing 24, 2002, 480-506.

  • K.-A Lie, S. Noelle & Rosenabaum (2002) [pdf file]
    On the resolution and stability of central difference schemes
    "Finite Volumes for Complex Applications", (Proceedings of the Third International Symposium held at Porquerolles, France, Hermes Penton Ltd, London), 2002, 793-800.

  • P. Arminjon & A. St-Cyr (2003) [pdf file]
    New space staggered and time interleaved 2nd order finite volume methods
    Applied Numerical Mathematics 46 (2), 2003, 135-155.

  • M. Christon, D. Ketchenson, & C. Rosinson (2003) [pdf file]
    An assesment of semi-discrete central schemes for hyperbolic conservation laws
    (SANDIA Report) SAND2003-3238, 2003, 1-111.

  • X.-D. Liu & P. D. Lax (2003) [pdf file]
    Positive schemes for solving multi-dimensional hyperbolic systems of conservation laws II
    J. Computational Physics 187, 2003, 428-440.

  • K.-A. Lie & S. Noelle (2003) [pdf file]
    An improved quadrature rule for the flux computation in staggered central difference schemes in multi-dimensions
    Journal of Scientific Computing 18, 2003, 69-81.

  • R. Liska & B. Wendroff (2003) [pdf file]
    Comparison of several difference schemes on 1D and 2D test problems for the Euler equations
    SIAM Journal on Scientific Computing 25(3), 2003, 995-1017.

  • P. Arminjon & A. St-Cyr (2003) [pdf file]
    NessyahuTadmor-type central finite volume methods without predictor for 3D Cartesian and unstructured tetrahedral grids
    Applied Numer. Math. (science digest link) 46 (2), 2003, 135-155.

  • L. Pareschi, G. Puppo & G. Russo (2005) [pdf file]
    Central Runge-Kutta schemes for conservation laws
    SIAM Journal on Scientific Computing 26(3), 2005, 979-999.

  • A. Kurganov & G. Petrova (2005) [pdf file]
    Central-upwind schemes on triangular grids for hyperbolic systems of conservation laws
    Numerical Methods for Partial Differential Equations 21, 2005, 536-552.

  • S. Jaisankar and S.V. Raghurama Rao (2007) [pdf file]
    Diffusion Regulation for Euler Solvers
    Journal of Computational Physics 221, 2007, 577-599.

  • A. Kurganov & C.-T. Lin (2007) [pdf file]
    On the reduction of numerical dissipation in central-upwind schemes
    Communications in Computational Physics 2(1), 2007, 141-163.

  • Abhilash J. Chandy & Steven H. Frankel (2008) [pdf file]
    Non-oscillatory central schemes for hyperbolic systems of conservation laws in three space dimensions
    SIAM Journal of Scientific Computing

  • Jorge Balbas & Xin Qian (2009) [pdf file]
    Non-oscillatory Central Schemes for 3D Hyperbolic Conservation Laws
    "Hyperbolic Partial Differential Equations, Theory, Numerics and Applications", Proceedings of the 12th international conference held at the Univedrsity of Maryland

  • S. Jaisankar & S. V. Raghurama Rao (2009) [pdf file]
    A central Rankine-Hugoniot solver for hyperbolic conservation laws
    J. Computational Physics 228, 2009, 770-798.

  • Kilian Cooley & James D. Baeder (2018) [pdf file]
    A central compact-reconstruction WENO method for hyperbolic conservation laws
    "2018 AIAA Aerospace Sciences Meeting", AIAA 2018-0067, 2018.

  • Hassan Yousefi & Timon Rabczuk (2019) [pdf file]
    Multiresolution-based adaptive central high resolution schemes for modeling of nonlinear propagating fronts
    Engineering Analysis with Boundary Elements 103, 2019, 172-195.

  • Pablo Esteban Montes & Oscar Reula (2020) [pdf file]
    New numerical interface scheme for the Kurganov- Tadmor second order method
    (Preprint).

  • Walter Boscheri & Lorenzo Pareschi (2021) [pdf file]
    High order pressure-based semi-implicit IMEX schemes for the 3D Navier-Stokes equations at all Mach numbers
    Journal of Computational Physics 434 (2021) 110206.


Non oscillatory central schemes on unstructured and overlapping grids

Back to Top
  • P. Arminjon, M.-C. Viallon, & A. Madrane (1997) [pdf file]
    A finite volume extension of the Lax-Friedrichs and Nessyahu-Tadmor schemes for conservation laws on unstructured grids
    International Journal of Computational Fluid Dynamics 9(1), 1997, 1-22.

  • P. Arminjon, M. C. Viallon, A. Madrane, & L. Kaddouri (1997) [pdf file]
    Discontinuous finite elements and 2-Dimensional Finite Volume Versions of the Lax-Friedrichs and Nessyahu-Tadmor difference schemes for Compressible Flows on Unstructured Grids
    CFD Review (M. Hafez and K. Oshima, eds.), John Wiley, 1997, pp. 241-261.

  • P. Arminjon & M.-C. Viallon (1999) [pdf file]
    Convergence of a finite volume extension of the Nessyahu-Tadmor scheme on unstructured grids for a two-dimensional linear hyperbolic equations
    SIAM Journal on Numerical Analysis 36, 1999, 738-771.

  • P. Arminjon, A. Madrane, & A. St-Cyr (2001) [pdf file]
    Numerical simulations of 3D flows with a non-oscillatory central scheme on unstructured tetrahedral grids
    "Hyperbolic Problems: Theory, Numerics, Applications",
    Proceedings of the 8th International Conference held in Magdeburg, Germany, Feb.28 - Mar. 3, 2000,
    (H. Freistuehler and G. Warnecke, eds.), Birkhauser, 140, 2001, 59-68.

  • O. V. Diyankov & I. Krasnogorov (2001) [pdf file]
    The Kurganov-Tadmor difference scheme for 1D and 2D Lagragian gasdynamics on irregular grids
    PPT Presentation 2001.

  • B. Haasdonk, B. Kroner & D. Rohde (2001) [pdf file]
    Convergence of a staggered Lax-Friedrichs scheme for nonlinear conservation laws on unstructured two-dimensional grids
    Numerische Mathematik 88, 2001, 459-484.

  • M. Kuther (2001) [pdf file]
    Error estimates for the staggered Lax-Friedrichs scheme on unstructured grids
    SIAM Journal on Numerical Analysis 39, 2001, 1269-1301.

  • S. Karni, A. Kurganov & G. Petrova (2002) [pdf file]
    A smoothness indicator for adaptive algorithms for hyperbolic systems
    Journal of Computational Physics 178, 2002, 323-341.

  • M. Kuther & M. Ohlberger (2003) [pdf file]
    Adaptive second-order central schemes on unstructured staggered grids
    "Hyperbolic Problems: Theory, Numerics, Applications",
    Proceedings of the 9th international conference held at CalTech, Mar. 2002, (T. Hou & E. Tadmor eds.) Springer, 2003, 295-304.

  • Hung Huynh (2003) [pdf file]
    Analysis and Improvement of Upwind and Centered Schemes on Quadrilateral and Triangular Meshes
    AIAA-2003-3541 (16th AIAA Computational Fluid Dynamics Conference, Orlando, Florida), 2003.

  • Yingjie Liu (2004) [pdf file]
    Central Schemes and Central Discontinuous Galerkin Methods on Overlapping Cells
    (Conference on Analysis, Modeling and Computation of PDE and Multiphase Flow, Stony Brook, NY), 2004.

  • Yingjie Liu (2005) [pdf file]
    Central schemes on overlapping cells
    Journal of Computational Physics 209, 2005, 82-104.

  • S. Noelle, W. Rosenbaum, & M. Rumpf (2006) [pdf file]
    3D adaptive central schemes: Part I. Algorithms for assembling the dual mesh
    Applied Numerical Mathematics 56 (6), 2006, 778-799.

  • G. Puppo (2007) [pdf file]
    Adaptive application of characteristic projection for central schemes
    "Hyperbolic Problems: Theory, Numerics, Applications",
    Proceedings of the 9th international conference held at CalTech, Mar. 2002, (T. Hou & E. Tadmor eds.) Springer, 2007, 819-830.

  • A. Chertock & A. Kurganov (2007) [pdf file]
    A Simple Eulerian Finite-Volume Method for Compressible Fluids in Domains with Moving Boundaries
    Communications in Mathematical Sciences (Preprint), 2007.

  • Y.-J. Liu, C.-W. Shu, E. Tadmor & M. Zhang (2007) [pdf file]
    Central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction
    SIAM Journal on Numerical Analysis 45 (6), 2007, 2442-2467.

  • Y.-J. Liu, C.-W. Shu, E. Tadmor & M. Zhang (2007) [pdf file]
    Non-oscillatory hierarchical reconstruction for central and finite volume schemes
    Communications in Mathematical Physics 2(5), 2007, 933-963.

  • Aziz Madrane (2007) [pdf file]
    3D adaptive central schemes on unstructured staggered grids
    "Hyperbolic Problems: Theory, Numerics, Applications",
    Proceedings of the 11th international conference held at Lyon, Jul. 2006, (S. Benzoni-Gavage & D. Serre eds.), Springer, 2007, 703-710.

  • Y.-J. Liu, C.-W. Shu, E. Tadmor, & M. Zhang (2008) [pdf file]
    L2-stability analysis of the central discontinuous Galerkin method
    Mathematical Modelling and Numerical Analysis 42, 2008, 593-607.

  • Ivan Christov & Bojan Popov (2008) [pdf file]
    New non-oscillatory central schemes on unstructured triangulations for hyperbolic systems of conservation laws
    Journal of Computational Physics 227, 2008, 5736--5757.

  • T. F. Illenseer & W. J. Duschl (2008) [pdf file]
    Two-dimensional central-upwind schemes for curvilinear grids and application to gas dynamics with angular momentum
    Computer Physics Communications 180 (11), 2008, 2283-2302.

  • C. J. Greenshields, H. G. Weller, L. Gasparini, & J. M. Reese (2009) [pdf file]
    Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows
    International Journal for Numerical Methods in Fluids 2009.

  • A. Madrane & R. Vaillancourt (2009) [pdf file]
    Three-dimensional adaptive central schemes on unstructured staggered grids
    SIAM J. on Scientific Computing 31(5), 2009, 3979-3999.

  • Walter Boscheri & GiacomoDimarco (2021) [pdf file]
    High order finite volume schemes with IMEX time stepping for the Boltzmann model on unstructured meshes
    Computer Methods in Appl. Mechanics and Engineering 387, 2021 11418031.


Non oscillatory central schemes for incompressible flows

Back to Top
  • R. Kupferman & E. Tadmor (1997) [pdf file]
    A fast high-resolution second-order central scheme for incompressible flows
    Proceedings of the National Academy of Sciences 94, 1997, 4848-4852.

  • D. Levy & E. Tadmor (1997) [pdf file]
    Non-oscillatory central schemes for the incompressible 2-D Euler equations
    Mathematical Research Letters 4 (3), 1997, 321-340.

  • R. Kupferman (1998) [pdf file]
    Simulation of viscoelastic fluids: Couette-Taylor Flow
    Journal of Computational Physics 147, 1998, 22-59.

  • R. Kupferman (1998) [pdf file]
    A numerical study of the axisymmetric Couette-Taylor problem using a fast high-resolution second-order central scheme
    SIAM Journal on Scientific Computing 20, 1998, 858-877.

  • R. Kupferman & M. Denn (1999) [pdf file]
    Simulation of the evolution of concentrated shear layers in a Maxwell fluid with a fast high-resolution finite-difference scheme
    Journal of Non-Newtonian Fluid Mechanics 84, 1999, 275-287.

  • R. Kupferman (2001) [pdf file]
    A central-difference scheme for a pure streamfunction formulation of incompressible viscous flow
    SIAM Journal on Scientific Computing 23 (1), 2001, 1-18.

  • V. Naulin & A. Nielsen (2003) [pdf file]
    Accuracy of spectral and finite difference schemes in 2D advection problems
    SIAM Journal of Scientific Computing 25, 2003, 104-126.

  • R. Grauer & F. Spanier (2003) [pdf file]
    A note on the use of central schemes for the incompressible Navier-Stokes flows
    Journal of Computational Physics 192, 2003, 727-731.

  • D. Levy (2005) [pdf file]
    A stable semi-discrete central scheme for the two-dimensional incompressible Euler equations
    IMA J. Numerical Analysis 25, 2005, 507-522.

  • Anne C. Bronzi, Milton C. Lopes Filho, & Helena J. Nussenzveig Lopes (2008) [pdf file]
    Computational visualization of Shnirelmans compactly supported weak solution
    Physica D 237 (14-17), 2008, 1989-1992.


Non oscillatory central schemes for Hamilton-Jacobi equations

Back to Top
  • C.-T. Lin & E. Tadmor (2000) [pdf file]
    High-resolution non-oscillatory central scheme for Hamilton-Jacobi equations
    SIAM Journal on Scientific Computation 21, 2000, 2163-2186.

  • A. Kurganov & E. Tadmor (2000) [pdf file]
    New high-resolution semi-discrete central schemes for Hamilton-Jacobi equations
    Journal of Computational Physics 160, 2000, 720-742.

  • C.-T. Lin & E. Tadmor (2001) [pdf file]
    L1-stability and error estimates for approximate Hamilton-Jacobi solutions
    Numerische Mathematik 87, 2001, 701-735.

  • S. Bryson & D. Levy (2003) [pdf file]
    High-order semi-discrete central-upwind schemes for multi-dimensional Hamilton-Jacobi equations
    Journal of Computational Physics 189, 2003, 63-87.

  • S. Bryson & D. Levy (2003) [pdf file]
    High-order schemes for multi-dimensional Hamilton-Jacobi equations
    "Hyperbolic Problems: Theory, Numerics, Applications",
    Proceedings of the 9th international conference held at CalTech, Mar. 2002, (T. Hou & E. Tadmor eds.), Springer, 2003, 387-396.

  • S. Bryson & D. Levy (2003) [pdf file]
    Central schemes for multi-dimensional Hamilton-Jacobi equations
    SIAM Journal on Scientific Computing 25, 2003, 769-791.

  • S. Bryson & D. Levy (2003) [pdf file]
    High-order central WENO schemes for multi-dimensional Hamilton-Jacobi equations
    SIAM Journal of Numerical Analysis 41, 2003, 1339-1369.

  • S. Bryson, A. Kurganov, D. Levy & G. Petrova (2005) [pdf file]
    Semi-discrete central-upwind schemes with reduced dissipation for Hamilton-Jacobi equations
    IMA J. Numerical Analysis 25, 2005, 113-138.

  • Fengyan Li & Sergey Yakovlev (2010) [pdf file]
    A central discontinuous Galerkin method for Hamilton-Jacobi equations
    Journal Scientific Computing 45, 2010, 404428.


Applications of non-oscillatory central schemes to semi-conductors

Back to Top
  • M. Trovato & P. Falsaperla (1998) [pdf file]
    Full nonlinear closure for a hydrodynamical model of transport in silicon
    Physical Review B-Condensed Matter 57, 1998, 4456-4471.

  • V. Romano & G. Russo (2000) [pdf file]
    Numerical solution for hydrodynamical models of semiconductors
    Mathematical Models and Applications in Applied Sciences 10(7), 2000, 1099-1120.

  • V. Romano & G. Russo (2000) [ps.gz file]
    Numerical solution for hydrodynamical models of semiconductors
    Mathematical Models and Methods in Applied Sciences 10, 2000, 1099-1120.

  • A. M. Anile, N. Nikiforakis & R. M. Pidatella (2000) [pdf file]
    Assessment of a high resolution centered scheme for the solution of hydrodynamical semiconductor equations
    SIAM Journal of Scientific Computing 22, 2000, 1533-1548.

  • A. M. Anile, V. Romano & G. Russo (2000) [pdf file]
    Extended hydrodynamical model of carrier transport in semiconductors
    SIAM Journal Applied Mathematics 61, 2000, 74-101.

  • A. M. Anile & V. Romano (2000) [pdf file]
    Hydrodynamical Modeling of Charge Carrier Transport in Semiconductors
    Meccanica 35, 2000, 249-296.

  • V. Romano (2001) [pdf file]
    2D simulation of a silicon MESFET with a nonparabolic hydrodynamical model based on the maximum entropy principle
    Journal of Computational Physics 176, 2001, 70-92.

  • V. Romano (2001) [pdf file]
    Non-parabolic band hydrodynamical model of silicon semiconductors and simulation of electron devices
    Mathematical Methods in the Applied Sciences 24, 2001, 439-471.

  • C. Gardner, A. Gelb & J. Hernandez (2002) [ps.gz file]
    A comparison of modern hyperbolic methods for semiconductor device simulation: NTK central schemes vs. CLAWPACK
    VLSI Design 15, 2002, 721-728.

  • A. El Moussati & C. Dalle (2006) [pdf file]
    High order explicit versus quasi-linear implicit finite-difference approximation for semiconductor device time-domain macroscopic modelling on parallel computer
    Journal of Computational Electronics 5(2-3), 2006, 235-240.

  • S. La Rosa, G. Mascali, & V. Romano (2008) [pdf file]
    Nonlinear models for Silicon semi-conductors
    (in "Scientific Computing in Electrical Engineering SCEE 2008" (J. Roos and R.J. Costa, eds.)) Mathematics in Industry, Springer 2010, 429-436.


Applications of non-oscillatory central schemes to sedimentation, flocculations and related models

Back to Top
  • R. Bürger & F. Concha (1998) [pdf file]
    Mathematical model and numerical simulation of the setting of flocculated suspensions
    International Journal of Multiphase Flow 24, 1998, 1005-1023.

  • E. B. Pitman (1998) [pdf file]
    Forces on bins: The effect of random friction
    Physical Review E 57, 1998, 3170-3175.

  • R. Bürger, S. Evje, K. H. Karlsen & K.-A. Lie (2000) [pdf file]
    Numerical methods for the simulation of the settling of flocculated suspensions
    Chemical Engineering Journal 80, 2000, 91-104.

  • R. Bürger, F. Concha, K. K. Fjelde & K. H. Karlsen (2000) [pdf file]
    Numerical simulation of the setlling of polydisprese suspensions of spheres
    Powder Technology 113, 2000, 30-54..

  • R. Bürger, K. -K Fjelde, K. Hofler & K. H. Karlsen (2001) [pdf file]
    Central difference solutions of the kinematic model of settling of polydisperse suspensions and three-dimensional particle-scale simulations
    Journal of Engineering Mathematics 41, 2001, 167-187.

  • S. Berres & R. Bürger (2003) [pdf file]
    On gravity and centrifugal settling of polydisperse suspensions forming compressible sediments
    International Journal of Solids and Structures 40, 2003, 4965-4987.

  • B. Xue & Y. Sun (2003) [pdf file]
    Modeling of sedimentation of polydisperese spherical beads with a broad size distribution
    Chemical Engineering Science 58, 2003, 1531-1543.

  • S. Berres, R. Bürger, K. H. Karlsen & E. M. Tory (2003) [pdf file]
    Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression
    SIAM Journal of Applied Mathematics 64, 2003, 41-80.

  • S. Berres, R. Bürger & K. H. Karlsen (2004) [pdf file]
    Central schemes and systems of conservation laws with discontinuous coefficients modeling gravity separation of polydisperse suspensions
    Journal of Computational and Applied Mathematics 164-165, 2004, 53-80.

  • S. Berres, R. Bürger & E. M. Tory (2004) [pdf file]
    Mathematical model and numerical simulation of the liquid fluidization of polydisperse solid particle mixtures
    Computing and Visualization in Science 6, 2004, 67-74.


Applications of non-oscillatory central schemes to multi-component problems

Back to Top
  • B. Engquist & O. Runborg (1996) [pdf file]
    Multiphase computations in geometrical optics
    Journal of Computational and Applied Mathematics 74, 1996, 175-192.

  • Riccardo Fazio & Giovanni Russo (2000) [ps.gz file]
    A Lagrangian central scheme for multi-fluid flows
    "Hyperbolic Problems: Theory, Numerics, Applications", (Proceedings of the 8th Int'l conference held in Magdeburg, Feb), 2000.

  • L. Gosse (2002) [pdf file]
    Using K-branch entropy solutions for multivalued geometric optics computations
    Journal of Computational Physics 180(1), 2002, 155-182.

  • S. Karni, E. Kirr, A. Kurganov & G. Petrova (2004) [pdf file]
    Compressible two-phase flows by central and upwind schemes
    Mathematical Modeling and Numerical Analysis 38(3), 2004, 477-493.

  • S. Evje & T. Flatten (2005) [pdf file]
    Hybrid central-upwind schemes for numerical resolution of two-phase flows
    Mathematical Modelling and Numerical Analysis 39 (2), 2005, 253-274.

  • Alina Chertock, Smadar Karni & Alexander Kurganov (2008) [pdf file]
    Interface tracking method for compressible multifluids
    Mathematical Modelling and Numerical Analysis 42 (6), 2008, 991-1020.

  • F. Furtado, F. Pereira, & S. Ribero (2008) [pdf file]
    A new two-dimensional second order non-oscillatory central scheme applied to multiphase flows in heterogeneous porous media
    2008.

  • E. Abreu, F. Pereira, & S. Ribeiro (2009) [pdf file]
    Central schemes for porous media flows
    Computational & Applied Mathematics 28 (1), 2009, 87-110.

  • Riccardo Fazio & Giovanni Russo (2010) [pdf file]
    Central schemes and second order boundary conditions for 1D interface and piston problems in Largragian coordinates
    Communicatons in Computational Physics 8(4), 2010, 797-822.

  • Yogiraj Mantri, Michael Herty, & Sebastian Noelle (2019) [pdf file]
    Well-balanced scheme for gas-flow in pipeline networks
    Networks and Homogeneous Media (doi: 10.3934/nhm.2019026) 14(4), 2019, 659-676.


Applications of non-oscillatory central schemes to relaxation problems and stiff source terms

Back to Top
  • F. Bereux & L. Sainsaulieu (1997) [pdf file]
    A Roe-type Riemann solver for hyperbolic systems with relaxation based on time-dependent wave-decomposition
    Numerische Mathematik 77, 1997, 143-185.

  • S. F. Liotta, V. Romano & G. Russo (2000) [pdf file]
    Central schemes for balance laws of relaxation type
    SIAM Journal on Numerical Analysis 38, 2000, 1337-1356.

  • L. Pareschi (2001) [pdf file]
    Central differencing based numerical schemes for hyperbolic conservation laws with relaxation terms
    SIAM Journal on Numerical Analysis 39(4), 2001, 1395-1417.

  • C. Arvanitis, T. Katsaounis & C. Makridakis (2001) [pdf file]
    Adaptive finite element relaxation schemes for hyperbolic conservation laws
    Mathematical Modeling and Numerical Analysis 35(1), 2001, 17-33.

  • R. Naidoo and S. Baboolal (2002) [pdf file]
    Adaptation and Assessment of a High Resolution Semi-Discrete Numerical Scheme for Hyperbolic Systems with Source Terms and Stiffness
    Lecture Notes in Computer Science, (Computational Science ICCS 2002, Springer) 2330, 2002, 452-460.

  • A. Kurganov (2003) [pdf file]
    An accurate deterministic projection method for hyerbolic systems with stif source term
    "Hyperbolic Problems: Theory, Numerics, Applications",
    Proceedings of the 9th international conference held in CalTech, Mar. 2002, (T. Hou & E. Tadmor eds.) Springer, 2003, 665-674.

  • Walter Boscheri & Giacomo Dimarco (2020) [pdf file]
    High order central WENO-Implicit-Explicit Runge Kutta schemes for the BGK model on general polygonal meshes
    Journal of Computational Physics 422 (2020) 109766.


Applications of non-oscillatory central schemes to extended thermodynamics

Back to Top
  • M. Torrilhon (2000) [pdf file]
    Characteristic waves and dissipation in the 13-moment-case
    Continuum Mechanics and Thermodynamics 12, 2000, 289-301.

  • S. Jin, L. Pareschi, & M. Slemrod (2002) [pdf file]
    A relaxation scheme for solving the Boltzmann equation based on the Chapman-Enskog expansion
    Acta Mathematicae Applicatae Sinica (English Series) 18 (1), 2002, 37-62.


Applications of non-oscillatory central schemes to balance laws and geophysical flows

Back to Top
  • S. F. Liotta, V. Romano & G. Russo (1999) [pdf file]
    Central schemes for systems of balance laws
    "Hyperbolic Problems: Theory, Numerics, Applications", (Proceedings of the 7th Int'l conference held in Zurich, Feb. 1998 (M. Fey and R. Jeltsch, eds.), Int'l Series on Numerical Mathematics, Birkhauser,) 130, 1999, 651-660.

  • Giovanni Russo (2001) [pdf file]
    Central schemes for balance laws
    "Progress in Industrial Mathematics at ECMI 2000" ((M. Anile, V. Capasso, and A. Greco, eds.), Mathematics in Industry, vol.) 1, 2001, 313-317.

  • Y.C. Tai, S. Noelle, J.M. N.T. Gray & K. Hutter (2001) [pdf file]
    Shock-capturing and front-tracking methods for granular avalanches
    Journal of Computational Physics 175, 2001, 269-301.

  • G. Russo (2002) [pdf file]
    Central schemes and systems of balance laws
    "Hyperbolic Partial Differential Equations, Theory, Numerics and Applications", ((A. Meister and I. Struckmeier, eds.) Vieweg, Wiesbaden (D)), 2002, 59-114.

  • A. Kurganov & D. Levy (2002) [pdf file]
    Central-Upwind Schemes for the Saint-Venant System
    Mathematical Modeling and Numerical Analysis 36, 2002, 397-425.

  • N. Crnjaric-Zic, S. Vukovic & L. Sopta (2004) [pdf file]
    Balanced finite volume WENO and central WENO schemes for the shallow water and the open-channel flow equations
    Journal of Computational Physics 200, 2004, 512-548.

  • A. Chertok & A. Kurganov (2004) [pdf file]
    On a Hybrid Finite-Volume-Particle Method
    Mathematical Modeling and Numerical Analysis 38(6), 2004, 1071-1091.

  • N. Crnjaric-Zic, S. Vukovic, & L. Sopta (2005) [pdf file]
    Balanced central NT schemes for the shallow water equations
    Proceedings of the Conference on Applied Mathematics and Scientific Computing, Part II ((Z. Drmac et. al., eds.) Springer), 2005, 171-185.

  • S. Bryson, A. Kosovichev & D. Levy (2005) [pdf file]
    High-order shock-capturing methods for modeling dynamics of the solar atmosphere
    Nonlinearity 201, 2005, 1-26.

  • M. Venutelli (2006) [pdf file]
    A third-order explicit central scheme for open channel flow simulations
    Journal of Hydraulic Research 44, 2006, 10.

  • Eduardo Abreu, Jim Douglas, Frederico Furtado, Dan Marchesin, & Felipe Pereira (2006) [pdf file]
    Three-phase immiscible displacement in heterogeneous petroleum reservoirs
    Mathematics and Computers in Simulation 73, 2006, 220.

  • A. Kurganov & G. Petrova (2007) [pdf file]
    A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system
    Commuications in Math. Sciences 5(1), 2007, 133-160.

  • A. Kurganov & G. Petrova (2007) [pdf file]
    A central-upwind scheme for nonlinear water waves generated by submarine landslides
    "Hyperbolic Problems: Theory, Numerics, Applications", (Proceedings of the 11th international conference held at Lyon, Jul. 2006, (S. Benzoni-Gavage & D. Serre eds.), Springer), 2007, 635-642.

  • A. Chertok, E. Kashdan, & A. Kurganov (2007) [pdf file]
    Propagation of diffusing pollutant by a hybrid Eulerian-Lagrangian method
    "Hyperbolic Problems: Theory, Numerics, Applications", (Proceedings of the 11th international conference held at Lyon, Jul. 2006, (S. Benzoni-Gavage & D. Serre eds.), Springer), 2007, 371-380.

  • Samuel N. Stechmann, Andrew J. Majda, & Boualem Khouider (2008) [pdf file]
    Nonlinear dynamics of hydrostatic internal gravity waves
    Theoretical and Computational Fluid Dynamics 22(6), 2008, 407-432.

  • Jorge Balbas and Smadar Karni (2009) [pdf file]
    A central scheme for shallow water flows along channels with irregular geometry
    Mathematical Modeling and Numerical Analysis 43, 2009, 333-351.

  • Andreas Bollermann, Alexander Kurganov, & Sebastian Noelle (2010) [pdf file]
    A well-balanced reconstruction for wetting/drying fronts
    Communications in Mathematical Sciences

  • S. Bryson, Y. Epshteyn, A. Kurganov, & G. Petrova (2010) [pdf file]
    Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system
    Mathematical Modelling and Numerical Analysis (10.1051/m2an/2010060), 2010.

  • J. Gray & B. Kokelaar (2010) [pdf file]
    Large particle segregation, transport and accumulation in granular free-surface flows
    J. Fluid Mech. 652, 2010, 105-137.

  • Ulrik Fjordholm & Siddhartha Mishra (2011) [pdf file]
    Vorticity preserving finite volume schemes for the shallow water equations
    SIAM J. Sci. Computation 33(2), 2011, 588-611.

  • C. G. Johnson & J. Gray (2011) [pdf file]
    Granular jets and hydraulic jumps on an inclined plane
    J. Fluid. Mech. 675, 2011, 87-116.

  • Jorge Balbas & Smadar Karni (2012) [pdf file]
    A non-oscillatory central scheme for one-dimensional two-layer shallow water flows along channels with irregular geometry
    Journal of Scientific Computing 2012.

  • Jorge Balbas & Gerardo Hernandez-Duenas (2012) [pdf file]
    A positivity preserving central scheme for shallow water flows in channels with wet-dry states
    M2AN

  • A. Chertock, A. Kurganov, Z. Qu and T. Wu (2012) [pdf file]
    On a three-layer approximation of two-layer shallow water equations
    Mathematical Modelling and Analysis

  • A. Chertock, S. Cui, A. Kurganov and T. Wu (2013) [pdf file]
    Well-balanced positivity preserving central-upwind scheme for the shallow water system with friction terms

  • A. Kurganov & J. Miller (2013) [pdf file]
    Central-upwind scheme for Savage-Hutter type model of submarine and slides and generated tsunami waves

  • A. Chertock, A. Kurganov, & Y. Liu (2013) [pdf file]
    Central-upwind schemes for the system of shallow water equations with horizontal temperature gradients
    Numerische Mathematik 2013.

  • Arthur Bousquet, Gung-Min Gie, Youngjoon Hong, & Jacques Laminie (2014) [pdf file]
    A higher order Finite Volume resolution method for a system related to the inviscid primitive equations in a complex domain
    Numerische Mathematik (DOI 10.1007/s00211-014-0622-4) 128, 2014, 431-461.

  • Zhong Zheng, Bo Guo, Ivan C. Christov, Michael A. Celia, & Howard A. Stone (2015) [pdf file]
    Flow regimes for uid injection into a conned porous medium
    J. Fluid Mech. (doi:10.1017/jfm.2015.68) 767, 2015, 881--909.

  • Yuanzhen Cheng & Alexander Kurganov (2016) [pdf file]
    Moving-water equilibria preserving central-upwind schemes for the shallow water equations
    Communications in Mathematical Sciences 14(6), 2016, 1643-1664.

  • R. Touma, U. Koley, C. Klingenberg (2016) [pdf file]
    Well-balanced unstaggered central schemes for the Euler equations with gravitation
    SIAM Journal on Scientific Computing 38(5), 2016, B773-B807.

  • A. Chertock, S. Cui, A. Kurganov, S.-N. Ozcan, & E. Tadmor (2018) [pdf file]
    Well-balanced schemes for the Euler equations with gravitation: conservative formulation using global fluxes
    Journal of Computational Physics 358, 2018, 36-52.

  • Alexander Kurganov (2018) [pdf file]
    Finite-volume schemes for shallow-water equations
    Acta Numerica 27, 2018, 289-351.


Applications of non-oscillatory central schemes to saturating dissipation

Back to Top
  • A. Kurganov & P. Rosenau (1997) [pdf file]
    Effects of a saturating dissipation in Burgers-type equations
    Communications on Pure and Applied Mathematics L 1997, 753-771.

  • A. Kurganov, D. Levy & P. Rosenau (1998) [pdf file]
    On Burgers-type equations with nonmonotonic dissipative fluxes
    Communications on Pure and Applied Mathematics LI 1998, 443-473.

  • J. Goodman, A. Kurganov & P. Rosenau (1999) [pdf file]
    Breakdown in Burgers-type equations with saturating dissipation fluxes
    Nonlinearity 12, 1999, 247-268.

  • J. Otero, L. A. Dontcheva, H. Johnston, C. Doering , R. A. Worthing, G. Petrova & A. Kurganov (2004) [pdf file]
    High Raleigh Number Convection in a Fluid Saturated Porous Layer
    Journal of Fluid Mechanics 500, 2004, 263-281.


Applications of non-oscillatory central schemes to homogenization and multiscale problems

Back to Top
  • E. Tadmor & T. Tassa (1997) [pdf file]
    On the homogenization of oscillatory solutions to nonlinear convection-diffusion equations
    Advances in Mathematical Sciences and Applications 7(1), 1997, 93-117.

  • X. Li & W. E (2005) [pdf file]
    Multiscale modeling of the dynamics of solids at finite temperature
    Journal of the Mechanics and Physics of Solids 53, 2005, 1650-1685.

  • F. Filbet & T. Rey (2014) [pdf file]
    A hierarchy of hybrid numerical methods for multi-scale kinetic equations


Applications of non-oscillatory central schemes to discrete kinetic models

Back to Top
  • E. Gabetta, L. Pareschi & M. Ronconi (2000) [ps.gz file]
    Central schemes for hydrodynamical limits of discrete-velocity kinetic models
    Transport Theory and Statistical Physics 29, 2000, 465-477.

  • A. Kurganov (2002) [pdf file]
    Semi-discrete central schemes for balance laws. Application to the Broadwell model
    (Proceedings of the Third International Symposium on Finite Volumes for Complex Applications), 2002.

  • R. Naidoo and S. Baboolal (2005) [pdf file]
    Numerical integration of the plasma fluid equations with a modification of the second-order Nessyahu-Tadmor central scheme and soliton modeling
    Mathematics and Computers in Simulation 69(5-6), 2005, 457-466.


Applications of non-oscillatory central schemes to MHD

Back to Top
  • C.C. Wu & T. Chang (2001) [pdf file]
    Further study of the dynamics of two-dimensional MHD coherent structures -- a large-scale simulation
    Journal of Atmospheric and Solar-Terrestrial Physics 63, 2001, 1447-1453.

  • K. Germaschewski, A. Bhattacharjee, T. Linde, R. Rosner, D. Keyes, A. Siegel & F. Dobrian (2003) [pdf file]
    The magnetic reconnection code: framework and application
    (SciDAC-TOPS, CMRS poster), 2003.

  • M. Torrilhon (2003) [pdf file]
    Non-uniform convergence of finite volume schemes for Riemann problems of ideal magnetohydrodynamics
    Journal of Computational Physics 192(1), 2003, 73-94.

  • J. Kleimann, A. Kopp, H. Fichtner, R. Grauer & K. Germaschewski (2004) [pdf file]
    Three-dimensional MHD high-resolution computations with CWENO employing adaptive mesh refinement
    Computer Physics Communication 158, 2004, 47-56.

  • J. Balbas, E. Tadmor & C.-C. Wu (2004) [pdf file]
    Non-oscillatory central schemes for one- and two-dimensional MHD equations
    Journal of Computational Physics 201, 2004, 261-285.

  • P. Arminjon & R. Touma (2005) [pdf file]
    Central finite volume methods with constrained transport divergence treatment for ideal MHD
    Journal of Computational Physics 204(2), 2005, 737-759.

  • R. Touma & P. Arminjon (2005) [pdf file]
    Central finite volume schemes with constrained transport divergence treatment for three-dimensional ideal MHD
    Journal of Computational Physics 212(2), 2005, 617-636.

  • J. Balbas & E. Tadmor (2006) [pdf file]
    Non-oscillatory central schemes for one- and two-dimensional MHD equations. II: High-order semi-discrete schemes
    SIAM Journal on Scientific Computation 28, 2006, 533-560.

  • P. Havlik & R. Liska (2007) [pdf file]
    Comparison of several finite difference methods for magnetohydrodynamics in 1D and 2D
    "Hyperbolic Partial Differential Equations, Theory, Numerics and Applications", (Proceedings of the 11th international conference held at Lyon, Jul. 2006 (S. Benzoni-Gavage & D. Serre eds.),) Springer, 2007, 585-592.

  • P. Arminjon & R. Touma (2007) [pdf file]
    Finite volume central schemes for 3-dimensional ideal MHD
    "Hyperbolic Partial Differential Equations, Theory, Numerics and Applications", (Proceedings of the 11th international conference held at Lyon, Jul. 2006 (S. Benzoni-Gavage & D. Serre eds.), Springer), 2007, 323-330.

  • S. Baboolal and R. Bharuthram (2007) [pdf file]
    Two-scale numerical solution of the electromagnetic two-fluid plasma-Maxwell equations: Shock and soliton simulation
    Mathematics and Computers in Simulation 76 (1-3), 2007, 3-7.

  • Shengtai Li (2008) [pdf file]
    High order central scheme on overlapping cells for magneto-hydrodynamic flows with and without constrained transport method
    Journal of Computational Physics 227 (15), 2008, 7368-7393.

  • Xin Qian, Jorge Balbas, Amitava Bhattacharjee, & Hongang Yang (2009) [pdf file]
    A numerical study of magnetic reconnection: A central scheme for Hall MHD
    ``Hyperbolic Problems: Theory, Numerics, Applications'' (Proceedings of the 12th International Conference held in University of Maryland, June 2008 (E. Tadmor, J.-G. Liu & A. Tzavaras, eds.), AMS Proc. Symp. Applied Math.,) 67 (2), 2009, 879-888.

  • J. Kleimann, A. Kopp, H. Fichtner, & R. Grauer (2009) [pdf file]
    A novel code for numerical 3-D MHD studies of CME expansion
    Annales Geophysicae 27, 2009, 989-1004.

  • R. Touma (2009) [pdf file]
    Unstaggered central schemes for MHD and SMHD
    ``Hyperbolic Problems: Theory, Numerics, Applications'' (Proceedings of the 12th International Conference held in University of Maryland, June 2008 (E. Tadmor, J.-G. Liu & A. Tzavaras, eds.), AMS Proc. Symp. Applied Math.,) 67 (2), 2009, 967-976.

  • Shengtai Li (2010) [pdf file]
    A fourth-order divergence-free method for MHD flows
    Journal of Computational Physics 229 (20), 2010, 7893-7910.

  • Fengyan Li, Liwei Xu, & Sergey Yakovlev (2011) [pdf file]
    Central discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field
    Journal of Computtaional Physics 230, 2011, 4828-4847.

  • Friedemann Kemm (2013) [pdf file]
    On the origin of divergence errors in MHD simulations and consequences for numerical schemes
    Communications in Applied Mathematics and Computational Science 8, 2013, 1-38.

  • Zhiliang Xu & Yingjie Liu (2016) [pdf file]
    New central and central discontinuous Galerkin schemes on overlapping cells of unstructured grids for solving ideal magnetohydrodynamic equations with globally divergence-free magnetic field
    Journal of Computational Physics 327, 2016, 203-224.


Applications of non-oscillatory central schemes to climate models

Back to Top
  • B. Khouider & A. Majda (2005) [pdf file]
    A non-oscillatory balanced scheme for an ideadlized tropical climate model. Part I: Algorithm and validation
    Theoretical and Computational Fluid Dynamics 19(5), 2005, 331-354.

  • B. Khouider & A. Majda (2005) [pdf file]
    A non-oscillatory balanced scheme for an ideadlized tropical climate model. Part II: Nonlinear coupling and moisture effects
    Theoretical and Computational Fluid Dynamics 19(5), 2005, 355-375.


Applications of non-oscillatory central schemes to biological and swarm-based models

Back to Top
  • M. Simpson, K. Landman, & D. Newgreen (2006) [pdf file]
    Chemotactic and diffusive migration on a nonuniformly growing domain: numerical algorithm development and applications
    Journal of Computational and Applied Mathematics 192, 2006, 282-300.

  • M. Simpson & K. Landman (2007) [pdf file]
    Nonmonotone chemotactic invasion: high-resolution simulation, phase plane analysis and new benchmark problems
    Journal of Computational Physics 225, 2007, 6-12.

  • A. Chertock & A. Kurganov (2008) [pdf file]
    A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models
    Numerische Mathematik 111(2), 2008, 169-206.

  • Alina Chertock, Alexander Kurganov, Xuefeng Wang, & Yaping Wu (2010) [pdf file]
    On a Chemotaxis Model with Saturated Chemotactic Flux
    Kinetics and Related Models

  • Christos N. Mavridis, Amoolya Tirumalai and John S. Baras (2022) [pdf file]
    Learning Swarm Interaction Dynamics from Density Evolution
    IEEE Transactions on Control of Network Systems (doi) 2022


Applications of non-oscillatory central schemes to relativistic hydrodynamics

Back to Top
  • L. Del Zanna & N. Bucciantini (2002) [pdf file]
    An efficient shock-capturing central-type scheme for multidimensional relativistic flows. I. Hydrodynamics
    Astronomy & Astrophysics 390, 2002, 1177-1186.

  • L. Del Zanna, N. Bucciantini, & L. Londrillo (2003) [pdf file]
    An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magentohydrodynamics
    Astronomy & Astrophysics 400, 2003, 397-413.

  • A. Lucas-Serrano, J.A. Font, J.M. Ibez, & J.M. Mart (2004) [pdf file]
    Assessment of a high-resolution central scheme for the solution of the relativistic hydrodynamics equations
    Astronomy and Astrophysics 428, 2004, 703-715.

  • M. Shibata & J.A. Font (2005) [pdf file]
    Robustness of a high-resolution central scheme for hydrodynamics simulations in general relativity
    Physical Review D 72(4), 2005, 047501.

  • Jose A. Font (2007) [pdf file]
    General relativistic hydrodynamics and megnetohydrodynamics: hyperbolic systems in relativistic astrophysics
    "Hyperbolic Problems: Theory, Numerics, Applications", (Proceedings of the 11th international conference held at Lyon, Jul. 2006, (S. Benzoni-Gavage & D. Serre eds.)), 2007, 3-17.

  • E. Molnr, H. Niemi, & D. H. Rischke (2010) [pdf file]
    Numerical tests of causal relativistic dissipative fluid dynamics
    The European Physical Journal C - Particles and Fields 65(3-4), 2010, 615-635.

  • Abdelaziz Beljadid & Philippe G. LeFloch (2017) [pdf file]
    A central-upwind geometry-preserving method for hyperbolic conservation laws on the sphere


Applications of non-oscillatory central schemes to elasticity and plasticity

Back to Top
  • A. Kurganov & M. Pollack (2011) [pdf file]
    Semi-discrete central-upwind schemes for elasticity in heterogeneous media

  • Amit Das, Amit Acharya, & Pierre Suquet (2016) [pdf file]
    Microstructure in plasticity without nonconvexity


Applications of non-oscillatory central schemes to thin film

Back to Top
  • Y. Ha, Y.-J. Kim, & T. G. Myers (2008) [pdf file]
    On the numerical solution of a driven thin film equation
    J. Computational Physics 227, 2008, 7246-7263.


Applications of non-oscillatory central schemes to math modeling in finance

Back to Top
  • P. Arminjon, A. St-Cyr & A. Madrane (2002) [pdf file]
    New two- and three-dimensional non-oscillatory central finite volume methods on staggered Cartesian grids
    Applied Numerical Mathematics 40, 2002, 367-390.

  • German I. Ramirez-Espinoza & Matthias Ehrhardt (2013) [pdf file]
    Conservative and finite volume methods for the convection-dominated pricing problem
    Advances in Applied Mathematics and Mechanics 5(6), 2013, 759-790.

  • O. Bhatoo, A. Peer, E. Tadmor, D. Tangman, & A. Saib (2019) [pdf file]
    Efficient conservative second order central upwind schemes for option pricing problems
    Journal of Computational Finance 22(5), 2019, 71-101.

  • O. Bhatoo, A. Peer, E. Tadmor, D. Tangman, & A. Saib (2019) [pdf file]
    Conservative third-order central-upwind schemes for option pricing problems
    Vietnam Journal of Mathematics 47, 2019, 813-833.


Applications of non-oscillatory central schemes to various systems

Back to Top
  • F. Hoch & M. Rascle (1999) [pdf file]
    A numerical study of a pathological example of p-system
    SIAM Journal of Numerical Analysis 36, 1999, 1588-1603.

  • A. Kurganov & E. Tadmor (2002) [pdf file]
    Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers
    Numerical Methods for Partial Differential Equations 18, 2002, 548-608.

  • G.-Q. Chen & H. Liu (2004) [pdf file]
    Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids
    Physica D 189, 2004, 141-165.

  • Alina Chertock, Alexander Kurganov & Yuri Rykov (2007) [pdf file]
    A new sticky particle method for pressureless gas dynamics
    SIAM Journal on Numerical Analysis 45 (6), 2007, 2408-2441.

  • A. Kurganov & A, Polizzi (2009) [pdf file]
    Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics
    Netowrks and Heterogeneous Media 4(3), 2009, 431-452.

  • Pierre Kestener, Frederic Chateau, & Romain Teyssier (2010) [pdf file]
    Accelerating Euler equations numerical solver on graphics processing units
    (Preprint).

  • Alina Chertock, Charles R. Doering, Eugene Kashdan, & Alexander Kurganov (2010) [pdf file]
    A fast explicit operator splitting method for passive scalar advection
    Journal of Sceintific Computing 45, 2010, 200-214.

  • Paola Goatin & Sheila Scialanga (2016) [pdf file]
    Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity
    Networks and Heterogeneous Media (doi) 11(1), 2016, 107-121.

  • Yedidia Neumeier, Abhishek Mishra, J. V. R. Prasad and Darrell K. James (2022) [pdf file]
    Modeling and simulation of unsteady flow in multistage compressors using interdomain boundaries
    Journal of Propulsion and Power (doi) 2022