|
|
Second-order central schemes in one-space dimension |
Back to Top |
-
H. Nessyahu & E. Tadmor (1990)
[pdf file]
Non-oscillatory central differencing for hyperbolic conservation laws
Journal of Computational Physics
87, 1990, 408-463.
-
G.-S. Jiang, D. Levy, C.-T. Lin, S. Osher & E. Tadmor (1998)
[pdf file]
High-resolution non-oscillatory central schemes with non-staggered grids for hyperbolic conservation laws
SIAM Journal on Numerical Analysis
35, 1998, 2147-2168.
-
A. Kurganov & E. Tadmor (2000)
[pdf file]
New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations
Journal of Computational Physics
160, 2000, 214-282.
-
A. Kurganov & G. Petrova (2000)
[pdf file]
Central schemes and contact discontinuities
Mathematical Modelling and Numerical Analysis
34, 2000, 1259-1275.
-
Riccardo Fazio (2003)
[pdf file]
Comparison of two conservative schemes for hyperbolic interface problems
"Numerical Mathematics and Advanced Applications" Proceddings of ENUMATH held in Ischia, July, 2001
(F. Brezzi, A. Buffa e A. Murli, eds), Springer-Italia, Milano, 2003, 85-93.
-
K.-A. Lie & S. Noelle (2003)
[pdf file]
On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws
SIAM Journal on Scientific Computation
24, 2003, 1157-1174.
-
C.-T. Lin (2003)
[pdf file]
New high-resolution central-upwind scehmes for nonlinear hyprbolic conservation laws
"Hyperbolic Problems: Theory, Numerics, Applications",
Proceedings of the 9th international conference held at CalTech, Mar. 2002, (T. Hou & E. Tadmor eds.), Springer, 2003, 705-716.
-
M. Fortin & A. S. Mounim (2005)
[pdf file]
Mixed and hybrid finite-element methods for concevtion-diffusion equations and their relationships with finite volume
Calcolo
42, 2005, 1-30.
-
M. Breuss (2005)
[pdf file]
An analysis of the influence of data extrema on some first and second order central approximations of hyperbolic conservation laws
Mathematical Modelling and Numerical Analysis
39, 2005, 965-994.
-
L. F. Shampine (2005)
[pdf file]
Solving hyperbolic PDEs in MATLAB
Applied Numerical Analysis & Computational Mathematics
2(3), 2005, 346-358.
-
S. Konyagin, B. Popov & O. Trifonov (2005)
[pdf file]
On the convergence of minmod-type schemes
SIAM J. on Numerical Analysis
42, 2005, 1978-1997.
-
F. Cavalli, G. Naldi, G. Puppo, & M. Semplice (2006)
[pdf file]
A comparison between relaxation and Kurganov-Tadmor scheme
Mathematics in Industry, 1,
(Progress in Industrial Mathematics at ECMI 2006, II) 12, 2006, 236-240.
-
B. Popov & O. Trifonov (2006)
[pdf file]
One sided stability and convergence of the Nessyahu-Tadmor scheme
Numerische Mathematik
104, 2006, 539-559.
-
S. Serna (2009)
[pdf file]
A characteristic-based nonconvex entropy-fix upwind scheme for the ideal magnetohydrodynamic equations
Journal of Computational Physics
228(11), 2009, 4232-4247.
-
Orhan Mehmetoglu & Bojan Popov (2011)
[pdf file]
Maximum principle and convergence of central schemes based on slope limiters
Mathematics of Computation
2011.
-
Ying Wang & Chiu-Yen Kao (2013)
[pdf file]
Central schemes for the modified Buckley-Leverett equation
Journal of Computational Science
4(12), 2013, 12-23.
-
P. P. Osipov & R. R. Nasyrov (2023)
[pdf file]
Comparison of the MacCormack's and the Kurganov-Tadmor's
Schemes for Sod's Problem
Lobachevskii Journal of Mathematics
44(5), 2023, 1785-1788.
-
R.Yan, W. Tong & G. Che (2023)
[pdf file]
An efficient invariant-region-preserving central scheme for hyperbolic conservation laws
Applied Mathematics and Computations
436, 2023, 127500.
|
|
Third-and higher-order central schemes in one-space dimension |
Back to Top |
-
X-D. Liu & E. Tadmor (1998)
[pdf file]
Third order nonoscillatory central scheme for hyperbolic conservation laws
Numerische Mathematik
79, 1998, 397-425.
-
F. Bianco, G. Puppo & G. Russo (1999)
[pdf file]
High order central schemes for hyperbolic systems of conservation laws
SIAM Journal on Scientific Computing
21, 1999, 294-322.
-
D. Levy, G. Puppo & G. Russo (1999)
[pdf file]
Central WENO schemes for hyperbolic systems of conservation laws
Mathematical Modelling and Numerical Analysis
33, 1999, 547-571.
-
F. Bianco, G. Puppo & G. Russo (1999)
[pdf file]
High order central schemes for hyperblic systems of conservation laws
"Hyperbolic Problems: Theory, Numerics, Applications",
(Proceedings of the 7th international conference held in Zurich, Feb. 1998 (M. Fey and R. Jeltsch, eds.), International series in Numerical Mathematics) 129, 1999, 55-64.
-
D. Levy, G. Puppo & G. Russo (2000)
[pdf file]
On the behavior of the total variation in CWENO methods for conservation laws
Applied Numerical Mathematics
33, 2000, 407-414.
-
A. Kurganov & D. Levy (2000)
[pdf file]
A third-order semi-discrete central scheme for conservation laws and convection-diffusion equation
SIAM Journal on Scientific Computing
22, 2000, 1461-1488.
-
G. Puppo (2002)
[pdf file]
Numerical entropy production on shocks and smooth transitions
Journal of Scientific Computing
17, 2002, 263-271.
-
J. Qiu & C.-W. Shu (2002)
[pdf file]
On the construction, comparison, and local characteristic decompositions for high order central WENO schemes
Journal of Computational Physics
183, 2002, 187-209.
-
E. Tadmor & J. Tanner (2003)
[pdf file]
An adaptive order Godunov type central scheme
"Hyperbolic Problems: Theory, Numerics, Applications",
Proceedings of the 9th international conference held at CalTech, Mar. 2002, (T. Hou & E. Tadmor eds.) Springer, 2003, 871-880.
-
R. Naidoo & S. Baboolal (2004)
[pdf file]
Application of the KurganovLevy semi-discrete numerical scheme to hyperbolic problems with nonlinear source terms
Future Generation Computer Systems
20(3), 2004, 465-473.
-
A. Balaguer & C. Conde (2005)
[pdf file]
Fourth-Order Nonoscillatory Upwind and Central Schemes for Hyperbolic Conservation Laws
SIAM Journal on Numerical Analysis
43(2), 2005, 455-473.
-
Youngsoo Ha & Yong Jung Kim (2006)
[pdf file]
Explicit solutions to a convection-reaction equation and defects of numerical schemes
Journal of Computational Physics
220(1), 2006, 511-531.
-
Y. H. Zahran (2006)
[pdf file]
A centgral WENO-TVD scheme for hyperbolic conservation laws
Novi Sad J. Math.
36(2), 2006, 25-42.
-
Arshad Ahmud Iqbal Peer, Ashvin Gopaul, Muhammad Zaid Dauhoo, & Muddun Bhuruth (2008)
[pdf file]
A new fourth-order non-oscillatory central scheme for hyperbolic conservation laws
Applied Numerical Mathematics
58, 2008, 674-688.
-
M. Dehghan & R. Jazlanian (2010)
[pdf file]
A fourth-order central Runge-Kutta scheme for hyperbolic conservation laws
Numerical Methods for Partial Differential Equations
26, 2010, 1675-1692.
-
M. Dehghan & R. Jazlanian (2011)
[pdf file]
On the total variation of a third-order semi-discrete central scheme for 1D conservation laws
Journal of Vibration and Control
"17(9), 2011, 1348-1358.
-
Mehdi Dehghan & Rooholah Jazlanian (2011)
[pdf file]
A high-order non-oscillatory central scheme with non-staggered grids for hyperbolic conservation laws
Computer Physics Communications
182(6), 2011, 1284-1294.
-
Arshad Ahmud Iqbal Peer, Désiré Yannick Tangman & Muddun Bhuruth (2013)
[pdf file]
A hybrid ENO reconstruction with limiters for systems of hyperbolic conservation laws
Mathematical Scieneces
7(1), 2013, Article 15.
-
Oliver Kolb (2014)
[pdf file]
On the full and global accuracy of a compact third order WENO scheme
SIAM J. Numer. Analysis
52(5), 2014, 2335-2355.
|
|
Non oscillatory central schemes in several space dimensions |
Back to Top |
-
G.-S. Jiang & E. Tadmor (1998)
[pdf file]
Non-oscillatory central schemes for multidimensional hyperbolic conservation laws
SIAM Journal on Scientific Computing
19, 1998, 1892-1917.
-
D. Levy (1998)
[ps.gz file]
Third-order 2D Central Schemes for Hyperbolic Conservation Laws
INRIA School on Hyperbolic Systems
Vol. I, 1998, 489-504..
-
T. Katsaounis & D. Levy (1999)
[pdf file]
A modified structured central scheme for 2D hyperbolic conservation laws
Applied Mathematics Letters
12, 1999, 89-96.
-
D. Levy, G. Puppo & G. Russo (2000)
[pdf file]
A third order central WENO scheme for 2D conservation laws
Applied Numerical Mathematics
33, 2000, 415-421.
-
D. Levy, G. Puppo & G. Russo (2000)
[pdf file]
Compact central WENO schemes for multidimensional conservation laws
SIAM Journal on Scientific Computing
22, 2000, 656-672.
-
W. Rosenbaum, M. Rumpf & S. Noelle (2000)
[ps.gz file]
An adaptive staggered scheme for conservation laws
"Hyperbolic Problems: Theory, Numerics, Applications",
Proceedings of the 8th international conference held in Magdeburg, Germany, February, 2000.
-
A. Kurganov & G. Petrova (2001)
[pdf file]
A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems
Numerische Mathematik
88, 2001, 683-729.
-
A. Kurganov, S. Noelle & G. Petrova (2001)
[pdf file]
Semi-discrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations
SIAM Journal on Scientific Computing
23, 2001, 707-740.
-
K.A. Lie & S. Noelle (2001)
[pdf file]
A naive implementation of ACM in nonoscillatory central difference schemes for 2D Euler equations
"Progress in Industrial Mathematics at ECMI 2000"
(M. Anile, V. Capasso, and A. Greco, eds.) Mathematics in Industry, vol. 1, 2001, 318-324.
-
D. Levy, G. Puppo & G. Russo (2002)
[pdf file]
A fourth-order central WENO scheme for multi-dimensional hyperbolic systems of conservation laws
SIAM Journal on Scientific Computing
24, 2002, 480-506.
-
K.-A Lie, S. Noelle & Rosenabaum (2002)
[pdf file]
On the resolution and stability of central difference schemes
"Finite Volumes for Complex Applications",
(Proceedings of the Third International Symposium held at Porquerolles, France, Hermes Penton Ltd, London), 2002, 793-800.
-
P. Arminjon & A. St-Cyr (2003)
[pdf file]
New space staggered and time interleaved 2nd order finite volume methods
Applied Numerical Mathematics
46 (2), 2003, 135-155.
-
M. Christon, D. Ketchenson, & C. Rosinson (2003)
[pdf file]
An assesment of semi-discrete central schemes for hyperbolic conservation laws
(SANDIA Report) SAND2003-3238, 2003, 1-111.
-
X.-D. Liu & P. D. Lax (2003)
[pdf file]
Positive schemes for solving multi-dimensional hyperbolic systems of conservation laws II
J. Computational Physics
187, 2003, 428-440.
-
K.-A. Lie & S. Noelle (2003)
[pdf file]
An improved quadrature rule for the flux computation in staggered central difference schemes in multi-dimensions
Journal of Scientific Computing
18, 2003, 69-81.
-
R. Liska & B. Wendroff (2003)
[pdf file]
Comparison of several difference schemes on 1D and 2D test problems for the Euler equations
SIAM Journal on Scientific Computing
25(3), 2003, 995-1017.
-
P. Arminjon & A. St-Cyr (2003)
[pdf file]
NessyahuTadmor-type central finite volume methods without predictor for 3D Cartesian and unstructured tetrahedral grids
Applied Numer. Math.
(science digest link) 46 (2), 2003, 135-155.
-
L. Pareschi, G. Puppo & G. Russo (2005)
[pdf file]
Central Runge-Kutta schemes for conservation laws
SIAM Journal on Scientific Computing
26(3), 2005, 979-999.
-
A. Kurganov & G. Petrova (2005)
[pdf file]
Central-upwind schemes on triangular grids for hyperbolic systems of conservation laws
Numerical Methods for Partial Differential Equations
21, 2005, 536-552.
-
S. Jaisankar and S.V. Raghurama Rao (2007)
[pdf file]
Diffusion Regulation for Euler Solvers
Journal of Computational Physics
221, 2007, 577-599.
-
A. Kurganov & C.-T. Lin (2007)
[pdf file]
On the reduction of numerical dissipation in central-upwind schemes
Communications in Computational Physics
2(1), 2007, 141-163.
-
Abhilash J. Chandy & Steven H. Frankel (2008)
[pdf file]
Non-oscillatory central schemes for hyperbolic systems of conservation laws in three space dimensions
SIAM Journal of Scientific Computing
-
Jorge Balbas & Xin Qian (2009)
[pdf file]
Non-oscillatory Central Schemes for 3D Hyperbolic Conservation Laws
"Hyperbolic Partial Differential Equations, Theory, Numerics and Applications", Proceedings of the 12th international conference held at the Univedrsity of Maryland
-
S. Jaisankar & S. V. Raghurama Rao (2009)
[pdf file]
A central Rankine-Hugoniot solver for hyperbolic conservation laws
J. Computational Physics
228, 2009, 770-798.
-
Kilian Cooley & James D. Baeder (2018)
[pdf file]
A central compact-reconstruction WENO method for hyperbolic conservation laws
"2018 AIAA Aerospace Sciences Meeting",
AIAA 2018-0067, 2018.
-
Hassan Yousefi & Timon Rabczuk (2019)
[pdf file]
Multiresolution-based adaptive central high resolution schemes for modeling of nonlinear propagating fronts
Engineering Analysis with Boundary Elements
103, 2019, 172-195.
-
Pablo Esteban Montes & Oscar Reula (2020)
[pdf file]
New numerical interface scheme for the Kurganov- Tadmor second order method
(Preprint).
-
Walter Boscheri & Lorenzo Pareschi (2021)
[pdf file]
High order pressure-based semi-implicit IMEX schemes for the 3D Navier-Stokes equations at all Mach numbers
Journal of Computational Physics
434 (2021) 110206.
|
|
Non oscillatory central schemes on unstructured and overlapping grids |
Back to Top |
-
P. Arminjon, M.-C. Viallon, & A. Madrane (1997)
[pdf file]
A finite volume extension of the Lax-Friedrichs and Nessyahu-Tadmor schemes for conservation laws on unstructured grids
International Journal of Computational Fluid Dynamics
9(1), 1997, 1-22.
-
P. Arminjon, M. C. Viallon, A. Madrane, & L. Kaddouri (1997)
[pdf file]
Discontinuous finite elements and 2-Dimensional Finite Volume Versions of the Lax-Friedrichs and Nessyahu-Tadmor difference schemes for Compressible Flows on Unstructured Grids
CFD Review
(M. Hafez and K. Oshima, eds.), John Wiley, 1997, pp. 241-261.
-
P. Arminjon & M.-C. Viallon (1999)
[pdf file]
Convergence of a finite volume extension of the Nessyahu-Tadmor scheme on unstructured grids for a two-dimensional linear hyperbolic equations
SIAM Journal on Numerical Analysis
36, 1999, 738-771.
-
P. Arminjon, A. Madrane, & A. St-Cyr (2001)
[pdf file]
Numerical simulations of 3D flows with a non-oscillatory central scheme on unstructured tetrahedral grids
"Hyperbolic Problems: Theory, Numerics, Applications",
Proceedings of the 8th International Conference held in Magdeburg, Germany, Feb.28 - Mar. 3, 2000,
(H. Freistuehler and G. Warnecke, eds.), Birkhauser, 140, 2001, 59-68.
-
O. V. Diyankov & I. Krasnogorov (2001)
[pdf file]
The Kurganov-Tadmor difference scheme for 1D and 2D Lagragian gasdynamics on irregular grids
PPT Presentation
2001.
-
B. Haasdonk, B. Kroner & D. Rohde (2001)
[pdf file]
Convergence of a staggered Lax-Friedrichs scheme for nonlinear conservation laws on unstructured two-dimensional grids
Numerische Mathematik
88, 2001, 459-484.
-
M. Kuther (2001)
[pdf file]
Error estimates for the staggered Lax-Friedrichs scheme on unstructured grids
SIAM Journal on Numerical Analysis
39, 2001, 1269-1301.
-
S. Karni, A. Kurganov & G. Petrova (2002)
[pdf file]
A smoothness indicator for adaptive algorithms for hyperbolic systems
Journal of Computational Physics
178, 2002, 323-341.
-
M. Kuther & M. Ohlberger (2003)
[pdf file]
Adaptive second-order central schemes on unstructured staggered grids
"Hyperbolic Problems: Theory, Numerics, Applications",
Proceedings of the 9th international conference held at CalTech, Mar. 2002, (T. Hou & E. Tadmor eds.) Springer, 2003, 295-304.
-
Hung Huynh (2003)
[pdf file]
Analysis and Improvement of Upwind and Centered Schemes on Quadrilateral and Triangular Meshes
AIAA-2003-3541
(16th AIAA Computational Fluid Dynamics Conference, Orlando, Florida), 2003.
-
Yingjie Liu (2004)
[pdf file]
Central Schemes and Central Discontinuous Galerkin Methods on Overlapping Cells
(Conference on Analysis, Modeling and Computation of PDE and Multiphase Flow, Stony Brook, NY), 2004.
-
Yingjie Liu (2005)
[pdf file]
Central schemes on overlapping cells
Journal of Computational Physics
209, 2005, 82-104.
-
S. Noelle, W. Rosenbaum, & M. Rumpf (2006)
[pdf file]
3D adaptive central schemes: Part I. Algorithms for assembling the dual mesh
Applied Numerical Mathematics
56 (6), 2006, 778-799.
-
G. Puppo (2007)
[pdf file]
Adaptive application of characteristic projection for central schemes
"Hyperbolic Problems: Theory, Numerics, Applications",
Proceedings of the 9th international conference held at CalTech, Mar. 2002, (T. Hou & E. Tadmor eds.) Springer, 2007, 819-830.
-
A. Chertock & A. Kurganov (2007)
[pdf file]
A Simple Eulerian Finite-Volume Method for Compressible Fluids in Domains with Moving Boundaries
Communications in Mathematical Sciences
(Preprint), 2007.
-
Y.-J. Liu, C.-W. Shu, E. Tadmor & M. Zhang (2007)
[pdf file]
Central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction
SIAM Journal on Numerical Analysis
45 (6), 2007, 2442-2467.
-
Y.-J. Liu, C.-W. Shu, E. Tadmor & M. Zhang (2007)
[pdf file]
Non-oscillatory hierarchical reconstruction for central and finite volume schemes
Communications in Mathematical Physics
2(5), 2007, 933-963.
-
Aziz Madrane (2007)
[pdf file]
3D adaptive central schemes on unstructured staggered grids
"Hyperbolic Problems: Theory, Numerics, Applications",
Proceedings of the 11th international conference held at Lyon, Jul. 2006, (S. Benzoni-Gavage & D. Serre eds.), Springer, 2007, 703-710.
-
Y.-J. Liu, C.-W. Shu, E. Tadmor, & M. Zhang (2008)
[pdf file]
L2-stability analysis of the central discontinuous Galerkin method
Mathematical Modelling and Numerical Analysis
42, 2008, 593-607.
-
Ivan Christov & Bojan Popov (2008)
[pdf file]
New non-oscillatory central schemes on unstructured triangulations for hyperbolic systems of conservation laws
Journal of Computational Physics
227, 2008, 5736--5757.
-
T. F. Illenseer & W. J. Duschl (2008)
[pdf file]
Two-dimensional central-upwind schemes for curvilinear grids and application to gas dynamics with angular momentum
Computer Physics Communications 180 (11), 2008, 2283-2302.
-
C. J. Greenshields, H. G. Weller, L. Gasparini, & J. M. Reese (2009)
[pdf file]
Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows
International Journal for Numerical Methods in Fluids
2009.
-
A. Madrane & R. Vaillancourt (2009)
[pdf file]
Three-dimensional adaptive central schemes on unstructured staggered grids
SIAM J. on Scientific Computing
31(5), 2009, 3979-3999.
-
Walter Boscheri & GiacomoDimarco (2021)
[pdf file]
High order finite volume schemes with IMEX time stepping for the Boltzmann model on unstructured meshes
Computer Methods in Appl. Mechanics and Engineering
387, 2021 11418031.
|
|
Non oscillatory central schemes for incompressible flows |
Back to Top |
-
R. Kupferman & E. Tadmor (1997)
[pdf file]
A fast high-resolution second-order central scheme for incompressible flows
Proceedings of the National Academy of Sciences
94, 1997, 4848-4852.
-
D. Levy & E. Tadmor (1997)
[pdf file]
Non-oscillatory central schemes for the incompressible 2-D Euler equations
Mathematical Research Letters
4 (3), 1997, 321-340.
-
R. Kupferman (1998)
[pdf file]
Simulation of viscoelastic fluids: Couette-Taylor Flow
Journal of Computational Physics
147, 1998, 22-59.
-
R. Kupferman (1998)
[pdf file]
A numerical study of the axisymmetric Couette-Taylor problem using a fast high-resolution second-order central scheme
SIAM Journal on Scientific Computing
20, 1998, 858-877.
-
R. Kupferman & M. Denn (1999)
[pdf file]
Simulation of the evolution of concentrated shear layers in a Maxwell fluid with a fast high-resolution finite-difference scheme
Journal of Non-Newtonian Fluid Mechanics
84, 1999, 275-287.
-
R. Kupferman (2001)
[pdf file]
A central-difference scheme for a pure streamfunction formulation of incompressible viscous flow
SIAM Journal on Scientific Computing
23 (1), 2001, 1-18.
-
V. Naulin & A. Nielsen (2003)
[pdf file]
Accuracy of spectral and finite difference schemes in 2D advection problems
SIAM Journal of Scientific Computing
25, 2003, 104-126.
-
R. Grauer & F. Spanier (2003)
[pdf file]
A note on the use of central schemes for the incompressible Navier-Stokes flows
Journal of Computational Physics
192, 2003, 727-731.
-
D. Levy (2005)
[pdf file]
A stable semi-discrete central scheme for the two-dimensional incompressible Euler equations
IMA J. Numerical Analysis
25, 2005, 507-522.
-
Anne C. Bronzi, Milton C. Lopes Filho, & Helena J. Nussenzveig Lopes (2008)
[pdf file]
Computational visualization of Shnirelmans compactly supported weak solution
Physica D
237 (14-17), 2008, 1989-1992.
|
|
Non oscillatory central schemes for Hamilton-Jacobi equations |
Back to Top |
-
C.-T. Lin & E. Tadmor (2000)
[pdf file]
High-resolution non-oscillatory central scheme for Hamilton-Jacobi equations
SIAM Journal on Scientific Computation
21, 2000, 2163-2186.
-
A. Kurganov & E. Tadmor (2000)
[pdf file]
New high-resolution semi-discrete central schemes for Hamilton-Jacobi equations
Journal of Computational Physics
160, 2000, 720-742.
-
C.-T. Lin & E. Tadmor (2001)
[pdf file]
L1-stability and error estimates for approximate Hamilton-Jacobi solutions
Numerische Mathematik
87, 2001, 701-735.
-
S. Bryson & D. Levy (2003)
[pdf file]
High-order semi-discrete central-upwind schemes for multi-dimensional Hamilton-Jacobi equations
Journal of Computational Physics
189, 2003, 63-87.
-
S. Bryson & D. Levy (2003)
[pdf file]
High-order schemes for multi-dimensional Hamilton-Jacobi equations
"Hyperbolic Problems: Theory, Numerics, Applications",
Proceedings of the 9th international conference held at CalTech, Mar. 2002, (T. Hou & E. Tadmor eds.), Springer, 2003, 387-396.
-
S. Bryson & D. Levy (2003)
[pdf file]
Central schemes for multi-dimensional Hamilton-Jacobi equations
SIAM Journal on Scientific Computing
25, 2003, 769-791.
-
S. Bryson & D. Levy (2003)
[pdf file]
High-order central WENO schemes for multi-dimensional Hamilton-Jacobi equations
SIAM Journal of Numerical Analysis
41, 2003, 1339-1369.
-
S. Bryson, A. Kurganov, D. Levy & G. Petrova (2005)
[pdf file]
Semi-discrete central-upwind schemes with reduced dissipation for Hamilton-Jacobi equations
IMA J. Numerical Analysis
25, 2005, 113-138.
-
Fengyan Li & Sergey Yakovlev (2010)
[pdf file]
A central discontinuous Galerkin method for Hamilton-Jacobi equations
Journal Scientific Computing
45, 2010, 404428.
|
|
Applications of non-oscillatory central schemes to semi-conductors |
Back to Top |
-
M. Trovato & P. Falsaperla (1998)
[pdf file]
Full nonlinear closure for a hydrodynamical model of transport in silicon
Physical Review B-Condensed Matter
57, 1998, 4456-4471.
-
V. Romano & G. Russo (2000)
[pdf file]
Numerical solution for hydrodynamical models of semiconductors
Mathematical Models and Applications in Applied Sciences
10(7), 2000, 1099-1120.
-
V. Romano & G. Russo (2000)
[ps.gz file]
Numerical solution for hydrodynamical models of semiconductors
Mathematical Models and Methods in Applied Sciences
10, 2000, 1099-1120.
-
A. M. Anile, N. Nikiforakis & R. M. Pidatella (2000)
[pdf file]
Assessment of a high resolution centered scheme for the solution of hydrodynamical semiconductor equations
SIAM Journal of Scientific Computing
22, 2000, 1533-1548.
-
A. M. Anile, V. Romano & G. Russo (2000)
[pdf file]
Extended hydrodynamical model of carrier transport in semiconductors
SIAM Journal Applied Mathematics
61, 2000, 74-101.
-
A. M. Anile & V. Romano (2000)
[pdf file]
Hydrodynamical Modeling of Charge Carrier Transport in Semiconductors
Meccanica
35, 2000, 249-296.
-
V. Romano (2001)
[pdf file]
2D simulation of a silicon MESFET with a nonparabolic hydrodynamical model based on the maximum entropy principle
Journal of Computational Physics
176, 2001, 70-92.
-
V. Romano (2001)
[pdf file]
Non-parabolic band hydrodynamical model of silicon semiconductors and simulation of electron devices
Mathematical Methods in the Applied Sciences
24, 2001, 439-471.
-
C. Gardner, A. Gelb & J. Hernandez (2002)
[ps.gz file]
A comparison of modern hyperbolic methods for semiconductor device simulation: NTK central schemes vs. CLAWPACK
VLSI Design
15, 2002, 721-728.
-
A. El Moussati & C. Dalle (2006)
[pdf file]
High order explicit versus quasi-linear implicit finite-difference approximation for semiconductor device time-domain macroscopic modelling on parallel computer
Journal of Computational Electronics
5(2-3), 2006, 235-240.
-
S. La Rosa, G. Mascali, & V. Romano (2008)
[pdf file]
Nonlinear models for Silicon semi-conductors
(in "Scientific Computing in Electrical Engineering SCEE 2008" (J. Roos and R.J. Costa, eds.)) Mathematics in Industry, Springer 2010, 429-436.
|
|
Applications of non-oscillatory central schemes to sedimentation, flocculations and related models |
Back to Top |
-
R. Bürger & F. Concha (1998)
[pdf file]
Mathematical model and numerical simulation of the setting of flocculated suspensions
International Journal of Multiphase Flow
24, 1998, 1005-1023.
-
E. B. Pitman (1998)
[pdf file]
Forces on bins: The effect of random friction
Physical Review E
57, 1998, 3170-3175.
-
R. Bürger, S. Evje, K. H. Karlsen & K.-A. Lie (2000)
[pdf file]
Numerical methods for the simulation of the settling of flocculated suspensions
Chemical Engineering Journal
80, 2000, 91-104.
-
R. Bürger, F. Concha, K. K. Fjelde & K. H. Karlsen (2000)
[pdf file]
Numerical simulation of the setlling of polydisprese suspensions of spheres
Powder Technology
113, 2000, 30-54..
-
R. Bürger, K. -K Fjelde, K. Hofler & K. H. Karlsen (2001)
[pdf file]
Central difference solutions of the kinematic model of settling of polydisperse suspensions and three-dimensional particle-scale simulations
Journal of Engineering Mathematics
41, 2001, 167-187.
-
S. Berres & R. Bürger (2003)
[pdf file]
On gravity and centrifugal settling of polydisperse suspensions forming compressible sediments
International Journal of Solids and Structures
40, 2003, 4965-4987.
-
B. Xue & Y. Sun (2003)
[pdf file]
Modeling of sedimentation of polydisperese spherical beads with a broad size distribution
Chemical Engineering Science
58, 2003, 1531-1543.
-
S. Berres, R. Bürger, K. H. Karlsen & E. M. Tory (2003)
[pdf file]
Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression
SIAM Journal of Applied Mathematics
64, 2003, 41-80.
-
S. Berres, R. Bürger & K. H. Karlsen (2004)
[pdf file]
Central schemes and systems of conservation laws with discontinuous coefficients modeling gravity separation of polydisperse suspensions
Journal of Computational and Applied Mathematics
164-165, 2004, 53-80.
-
S. Berres, R. Bürger & E. M. Tory (2004)
[pdf file]
Mathematical model and numerical simulation of the liquid fluidization of polydisperse solid particle mixtures
Computing and Visualization in Science
6, 2004, 67-74.
|
|
Applications of non-oscillatory central schemes to multi-component problems |
Back to Top |
-
B. Engquist & O. Runborg (1996)
[pdf file]
Multiphase computations in geometrical optics
Journal of Computational and Applied Mathematics
74, 1996, 175-192.
-
Riccardo Fazio & Giovanni Russo (2000)
[ps.gz file]
A Lagrangian central scheme for multi-fluid flows
"Hyperbolic Problems: Theory, Numerics, Applications",
(Proceedings of the 8th Int'l conference held in Magdeburg, Feb), 2000.
-
L. Gosse (2002)
[pdf file]
Using K-branch entropy solutions for multivalued geometric optics computations
Journal of Computational Physics
180(1), 2002, 155-182.
-
S. Karni, E. Kirr, A. Kurganov & G. Petrova (2004)
[pdf file]
Compressible two-phase flows by central and upwind schemes
Mathematical Modeling and Numerical Analysis
38(3), 2004, 477-493.
-
S. Evje & T. Flatten (2005)
[pdf file]
Hybrid central-upwind schemes for numerical resolution of two-phase flows
Mathematical Modelling and Numerical Analysis
39 (2), 2005, 253-274.
-
Alina Chertock, Smadar Karni & Alexander Kurganov (2008)
[pdf file]
Interface tracking method for compressible multifluids
Mathematical Modelling and Numerical Analysis
42 (6), 2008, 991-1020.
-
F. Furtado, F. Pereira, & S. Ribero (2008)
[pdf file]
A new two-dimensional second order non-oscillatory central scheme applied to multiphase flows in heterogeneous porous media
2008.
-
E. Abreu, F. Pereira, & S. Ribeiro (2009)
[pdf file]
Central schemes for porous media flows
Computational & Applied Mathematics
28 (1), 2009, 87-110.
-
Riccardo Fazio & Giovanni Russo (2010)
[pdf file]
Central schemes and second order boundary conditions for 1D interface and piston problems in Largragian coordinates
Communicatons in Computational Physics
8(4), 2010, 797-822.
-
Yogiraj Mantri, Michael Herty, & Sebastian Noelle (2019)
[pdf file]
Well-balanced scheme for gas-flow in pipeline networks
Networks and Homogeneous Media
(doi: 10.3934/nhm.2019026) 14(4), 2019, 659-676.
|
|
Applications of non-oscillatory central schemes to relaxation problems and stiff source terms |
Back to Top |
-
F. Bereux & L. Sainsaulieu (1997)
[pdf file]
A Roe-type Riemann solver for hyperbolic systems with relaxation based on time-dependent wave-decomposition
Numerische Mathematik
77, 1997, 143-185.
-
S. F. Liotta, V. Romano & G. Russo (2000)
[pdf file]
Central schemes for balance laws of relaxation type
SIAM Journal on Numerical Analysis
38, 2000, 1337-1356.
-
L. Pareschi (2001)
[pdf file]
Central differencing based numerical schemes for hyperbolic conservation laws with relaxation terms
SIAM Journal on Numerical Analysis
39(4), 2001, 1395-1417.
-
C. Arvanitis, T. Katsaounis & C. Makridakis (2001)
[pdf file]
Adaptive finite element relaxation schemes for hyperbolic conservation laws
Mathematical Modeling and Numerical Analysis
35(1), 2001, 17-33.
-
R. Naidoo and S. Baboolal (2002)
[pdf file]
Adaptation and Assessment of a High Resolution Semi-Discrete Numerical Scheme for Hyperbolic Systems with Source Terms and Stiffness
Lecture Notes in Computer Science,
(Computational Science ICCS 2002, Springer) 2330, 2002, 452-460.
-
A. Kurganov (2003)
[pdf file]
An accurate deterministic projection method for hyerbolic systems with stif source term
"Hyperbolic Problems: Theory, Numerics, Applications",
Proceedings of the 9th international conference held in CalTech, Mar. 2002, (T. Hou & E. Tadmor eds.) Springer, 2003, 665-674.
-
Walter Boscheri & Giacomo Dimarco (2020)
[pdf file]
High order central WENO-Implicit-Explicit Runge Kutta
schemes for the BGK model on general polygonal meshes
Journal of Computational Physics 422 (2020) 109766.
|
|
Applications of non-oscillatory central schemes to extended thermodynamics |
Back to Top |
-
M. Torrilhon (2000)
[pdf file]
Characteristic waves and dissipation in the 13-moment-case
Continuum Mechanics and Thermodynamics
12, 2000, 289-301.
-
S. Jin, L. Pareschi, & M. Slemrod (2002)
[pdf file]
A relaxation scheme for solving the Boltzmann equation based on the Chapman-Enskog expansion
Acta Mathematicae Applicatae Sinica (English Series)
18 (1), 2002, 37-62.
|
|
Applications of non-oscillatory central schemes to balance laws and geophysical flows |
Back to Top |
-
S. F. Liotta, V. Romano & G. Russo (1999)
[pdf file]
Central schemes for systems of balance laws
"Hyperbolic Problems: Theory, Numerics, Applications",
(Proceedings of the 7th Int'l conference held in Zurich, Feb. 1998 (M. Fey and R. Jeltsch, eds.), Int'l Series on Numerical Mathematics, Birkhauser,) 130, 1999, 651-660.
-
Giovanni Russo (2001)
[pdf file]
Central schemes for balance laws
"Progress in Industrial Mathematics at ECMI 2000"
((M. Anile, V. Capasso, and A. Greco, eds.), Mathematics in Industry, vol.) 1, 2001, 313-317.
-
Y.C. Tai, S. Noelle, J.M. N.T. Gray & K. Hutter (2001)
[pdf file]
Shock-capturing and front-tracking methods for granular avalanches
Journal of Computational Physics
175, 2001, 269-301.
-
G. Russo (2002)
[pdf file]
Central schemes and systems of balance laws
"Hyperbolic Partial Differential Equations, Theory, Numerics and Applications",
((A. Meister and I. Struckmeier, eds.) Vieweg, Wiesbaden (D)), 2002, 59-114.
-
A. Kurganov & D. Levy (2002)
[pdf file]
Central-Upwind Schemes for the Saint-Venant System
Mathematical Modeling and Numerical Analysis
36, 2002, 397-425.
-
N. Crnjaric-Zic, S. Vukovic & L. Sopta (2004)
[pdf file]
Balanced finite volume WENO and central WENO schemes for the shallow water and the open-channel flow equations
Journal of Computational Physics
200, 2004, 512-548.
-
A. Chertok & A. Kurganov (2004)
[pdf file]
On a Hybrid Finite-Volume-Particle Method
Mathematical Modeling and Numerical Analysis
38(6), 2004, 1071-1091.
-
N. Crnjaric-Zic, S. Vukovic, & L. Sopta (2005)
[pdf file]
Balanced central NT schemes for the shallow water equations
Proceedings of the Conference on Applied Mathematics and Scientific Computing, Part II
((Z. Drmac et. al., eds.) Springer), 2005, 171-185.
-
S. Bryson, A. Kosovichev & D. Levy (2005)
[pdf file]
High-order shock-capturing methods for modeling dynamics of the solar atmosphere
Nonlinearity
201, 2005, 1-26.
-
M. Venutelli (2006)
[pdf file]
A third-order explicit central scheme for open channel flow simulations
Journal of Hydraulic Research
44, 2006, 10.
-
Eduardo Abreu, Jim Douglas, Frederico Furtado, Dan Marchesin, & Felipe Pereira (2006)
[pdf file]
Three-phase immiscible displacement in heterogeneous petroleum reservoirs
Mathematics and Computers in Simulation
73, 2006, 220.
-
A. Kurganov & G. Petrova (2007)
[pdf file]
A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system
Commuications in Math. Sciences
5(1), 2007, 133-160.
-
A. Kurganov & G. Petrova (2007)
[pdf file]
A central-upwind scheme for nonlinear water waves generated by submarine landslides
"Hyperbolic Problems: Theory, Numerics, Applications",
(Proceedings of the 11th international conference held at Lyon, Jul. 2006, (S. Benzoni-Gavage & D. Serre eds.), Springer), 2007, 635-642.
-
A. Chertok, E. Kashdan, & A. Kurganov (2007)
[pdf file]
Propagation of diffusing pollutant by a hybrid Eulerian-Lagrangian method
"Hyperbolic Problems: Theory, Numerics, Applications",
(Proceedings of the 11th international conference held at Lyon, Jul. 2006, (S. Benzoni-Gavage & D. Serre eds.), Springer), 2007, 371-380.
-
Samuel N. Stechmann, Andrew J. Majda, & Boualem Khouider (2008)
[pdf file]
Nonlinear dynamics of hydrostatic internal gravity waves
Theoretical and Computational Fluid Dynamics
22(6), 2008, 407-432.
-
Jorge Balbas and Smadar Karni (2009)
[pdf file]
A central scheme for shallow water flows along channels with irregular geometry
Mathematical Modeling and Numerical Analysis
43, 2009, 333-351.
-
Andreas Bollermann, Alexander Kurganov, & Sebastian Noelle (2010)
[pdf file]
A well-balanced reconstruction for wetting/drying fronts
Communications in Mathematical Sciences
-
S. Bryson, Y. Epshteyn, A. Kurganov, & G. Petrova (2010)
[pdf file]
Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system
Mathematical Modelling and Numerical Analysis
(10.1051/m2an/2010060), 2010.
-
J. Gray & B. Kokelaar (2010)
[pdf file]
Large particle segregation, transport and accumulation in granular free-surface flows
J. Fluid Mech.
652, 2010, 105-137.
-
Ulrik Fjordholm & Siddhartha Mishra (2011)
[pdf file]
Vorticity preserving finite volume schemes for the shallow water equations
SIAM J. Sci. Computation
33(2), 2011, 588-611.
-
C. G. Johnson & J. Gray (2011)
[pdf file]
Granular jets and hydraulic jumps on an inclined plane
J. Fluid. Mech.
675, 2011, 87-116.
-
Jorge Balbas & Smadar Karni (2012)
[pdf file]
A non-oscillatory central scheme for one-dimensional two-layer shallow water flows along channels with irregular geometry
Journal of Scientific Computing
2012.
-
Jorge Balbas & Gerardo Hernandez-Duenas (2012)
[pdf file]
A positivity preserving central scheme for shallow water flows in channels with wet-dry states
M2AN
-
A. Chertock, A. Kurganov, Z. Qu and T. Wu (2012)
[pdf file]
On a three-layer approximation of two-layer shallow water equations
Mathematical Modelling and Analysis
-
A. Chertock, S. Cui, A. Kurganov and T. Wu (2013)
[pdf file]
Well-balanced positivity preserving central-upwind scheme for the shallow water system with friction terms
-
A. Kurganov & J. Miller (2013)
[pdf file]
Central-upwind scheme for Savage-Hutter type model of submarine and slides and generated tsunami waves
-
A. Chertock, A. Kurganov, & Y. Liu (2013)
[pdf file]
Central-upwind schemes for the system of shallow water equations with horizontal temperature gradients
Numerische Mathematik
2013.
-
Arthur Bousquet, Gung-Min Gie, Youngjoon Hong, & Jacques Laminie (2014)
[pdf file]
A higher order Finite Volume resolution method for a system related to the inviscid primitive equations in a complex domain
Numerische Mathematik
(DOI 10.1007/s00211-014-0622-4) 128, 2014, 431-461.
-
Zhong Zheng, Bo Guo, Ivan C. Christov, Michael A. Celia, & Howard A. Stone (2015)
[pdf file]
Flow regimes for uid injection into a conned porous medium
J. Fluid Mech.
(doi:10.1017/jfm.2015.68) 767, 2015, 881--909.
-
Yuanzhen Cheng & Alexander Kurganov (2016)
[pdf file]
Moving-water equilibria preserving central-upwind schemes for the shallow water equations
Communications in Mathematical Sciences
14(6), 2016, 1643-1664.
-
R. Touma, U. Koley, C. Klingenberg (2016)
[pdf file]
Well-balanced unstaggered central schemes for the Euler equations with gravitation
SIAM Journal on Scientific Computing
38(5), 2016, B773-B807.
-
A. Chertock, S. Cui, A. Kurganov, S.-N. Ozcan, & E. Tadmor (2018)
[pdf file]
Well-balanced schemes for the Euler equations with gravitation: conservative formulation using global fluxes
Journal of Computational Physics
358, 2018, 36-52.
-
Alexander Kurganov (2018)
[pdf file]
Finite-volume schemes for shallow-water equations
Acta Numerica
27, 2018, 289-351.
|
|
Applications of non-oscillatory central schemes to saturating dissipation |
Back to Top |
-
A. Kurganov & P. Rosenau (1997)
[pdf file]
Effects of a saturating dissipation in Burgers-type equations
Communications on Pure and Applied Mathematics L
1997, 753-771.
-
A. Kurganov, D. Levy & P. Rosenau (1998)
[pdf file]
On Burgers-type equations with nonmonotonic dissipative fluxes
Communications on Pure and Applied Mathematics LI
1998, 443-473.
-
J. Goodman, A. Kurganov & P. Rosenau (1999)
[pdf file]
Breakdown in Burgers-type equations with saturating dissipation fluxes
Nonlinearity
12, 1999, 247-268.
-
J. Otero, L. A. Dontcheva, H. Johnston, C. Doering , R. A. Worthing, G. Petrova & A. Kurganov (2004)
[pdf file]
High Raleigh Number Convection in a Fluid Saturated Porous Layer
Journal of Fluid Mechanics
500, 2004, 263-281.
|
|
Applications of non-oscillatory central schemes to homogenization and multiscale problems |
Back to Top |
-
E. Tadmor & T. Tassa (1997)
[pdf file]
On the homogenization of oscillatory solutions to nonlinear convection-diffusion equations
Advances in Mathematical Sciences and Applications
7(1), 1997, 93-117.
-
X. Li & W. E (2005)
[pdf file]
Multiscale modeling of the dynamics of solids at finite temperature
Journal of the Mechanics and Physics of Solids
53, 2005, 1650-1685.
-
F. Filbet & T. Rey (2014)
[pdf file]
A hierarchy of hybrid numerical methods for multi-scale kinetic equations
|
|
Applications of non-oscillatory central schemes to discrete kinetic models |
Back to Top |
-
E. Gabetta, L. Pareschi & M. Ronconi (2000)
[ps.gz file]
Central schemes for hydrodynamical limits of discrete-velocity kinetic models
Transport Theory and Statistical Physics
29, 2000, 465-477.
-
A. Kurganov (2002)
[pdf file]
Semi-discrete central schemes for balance laws. Application to the Broadwell model
(Proceedings of the Third International Symposium on Finite Volumes for Complex Applications), 2002.
-
R. Naidoo and S. Baboolal (2005)
[pdf file]
Numerical integration of the plasma fluid equations with a modification of the second-order Nessyahu-Tadmor central scheme and soliton modeling
Mathematics and Computers in Simulation
69(5-6), 2005, 457-466.
|
|
Applications of non-oscillatory central schemes to MHD |
Back to Top |
-
C.C. Wu & T. Chang (2001)
[pdf file]
Further study of the dynamics of two-dimensional MHD coherent structures -- a large-scale simulation
Journal of Atmospheric and Solar-Terrestrial Physics
63, 2001, 1447-1453.
-
K. Germaschewski, A. Bhattacharjee, T. Linde, R. Rosner, D. Keyes, A. Siegel & F. Dobrian (2003)
[pdf file]
The magnetic reconnection code: framework and application
(SciDAC-TOPS, CMRS poster), 2003.
-
M. Torrilhon (2003)
[pdf file]
Non-uniform convergence of finite volume schemes for Riemann problems of ideal magnetohydrodynamics
Journal of Computational Physics
192(1), 2003, 73-94.
-
J. Kleimann, A. Kopp, H. Fichtner, R. Grauer & K. Germaschewski (2004)
[pdf file]
Three-dimensional MHD high-resolution computations with CWENO employing adaptive mesh refinement
Computer Physics Communication
158, 2004, 47-56.
-
J. Balbas, E. Tadmor & C.-C. Wu (2004)
[pdf file]
Non-oscillatory central schemes for one- and two-dimensional MHD equations
Journal of Computational Physics
201, 2004, 261-285.
-
P. Arminjon & R. Touma (2005)
[pdf file]
Central finite volume methods with constrained transport divergence treatment for ideal MHD
Journal of Computational Physics
204(2), 2005, 737-759.
-
R. Touma & P. Arminjon (2005)
[pdf file]
Central finite volume schemes with constrained transport divergence treatment for three-dimensional ideal MHD
Journal of Computational Physics
212(2), 2005, 617-636.
-
J. Balbas & E. Tadmor (2006)
[pdf file]
Non-oscillatory central schemes for one- and two-dimensional MHD equations. II: High-order semi-discrete schemes
SIAM Journal on Scientific Computation
28, 2006, 533-560.
-
P. Havlik & R. Liska (2007)
[pdf file]
Comparison of several finite difference methods for magnetohydrodynamics in 1D and 2D
"Hyperbolic Partial Differential Equations, Theory, Numerics and Applications",
(Proceedings of the 11th international conference held at Lyon, Jul. 2006 (S. Benzoni-Gavage & D. Serre eds.),) Springer, 2007, 585-592.
-
P. Arminjon & R. Touma (2007)
[pdf file]
Finite volume central schemes for 3-dimensional ideal MHD
"Hyperbolic Partial Differential Equations, Theory, Numerics and Applications",
(Proceedings of the 11th international conference held at Lyon, Jul. 2006 (S. Benzoni-Gavage & D. Serre eds.), Springer), 2007, 323-330.
-
S. Baboolal and R. Bharuthram (2007)
[pdf file]
Two-scale numerical solution of the electromagnetic two-fluid plasma-Maxwell equations: Shock and soliton simulation
Mathematics and Computers in Simulation
76 (1-3), 2007, 3-7.
-
Shengtai Li (2008)
[pdf file]
High order central scheme on overlapping cells for magneto-hydrodynamic flows with and without constrained transport method
Journal of Computational Physics
227 (15), 2008, 7368-7393.
-
Xin Qian, Jorge Balbas, Amitava Bhattacharjee, & Hongang Yang (2009)
[pdf file]
A numerical study of magnetic reconnection: A central scheme for Hall MHD
``Hyperbolic Problems: Theory, Numerics, Applications''
(Proceedings of the 12th International Conference held in University of Maryland, June 2008 (E. Tadmor, J.-G. Liu & A. Tzavaras, eds.), AMS Proc. Symp. Applied Math.,) 67 (2), 2009, 879-888.
-
J. Kleimann, A. Kopp, H. Fichtner, & R. Grauer (2009)
[pdf file]
A novel code for numerical 3-D MHD studies of CME expansion
Annales Geophysicae
27, 2009, 989-1004.
-
R. Touma (2009)
[pdf file]
Unstaggered central schemes for MHD and SMHD
``Hyperbolic Problems: Theory, Numerics, Applications''
(Proceedings of the 12th International Conference held in University of Maryland, June 2008 (E. Tadmor, J.-G. Liu & A. Tzavaras, eds.), AMS Proc. Symp. Applied Math.,) 67 (2), 2009, 967-976.
-
Shengtai Li (2010)
[pdf file]
A fourth-order divergence-free method for MHD flows
Journal of Computational Physics
229 (20), 2010, 7893-7910.
-
Fengyan Li, Liwei Xu, & Sergey Yakovlev (2011)
[pdf file]
Central discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field
Journal of Computtaional Physics
230, 2011, 4828-4847.
-
Friedemann Kemm (2013)
[pdf file]
On the origin of divergence errors in MHD simulations and consequences for numerical schemes
Communications in Applied Mathematics and Computational Science
8, 2013, 1-38.
-
Zhiliang Xu & Yingjie Liu (2016)
[pdf file]
New central and central discontinuous Galerkin schemes on overlapping cells of unstructured grids for solving ideal magnetohydrodynamic equations with globally divergence-free magnetic field
Journal of Computational Physics
327, 2016, 203-224.
|
|
Applications of non-oscillatory central schemes to climate models |
Back to Top |
-
B. Khouider & A. Majda (2005)
[pdf file]
A non-oscillatory balanced scheme for an ideadlized tropical climate model. Part I: Algorithm and validation
Theoretical and Computational Fluid Dynamics
19(5), 2005, 331-354.
-
B. Khouider & A. Majda (2005)
[pdf file]
A non-oscillatory balanced scheme for an ideadlized tropical climate model. Part II: Nonlinear coupling and moisture effects
Theoretical and Computational Fluid Dynamics
19(5), 2005, 355-375.
|
|
Applications of non-oscillatory central schemes to biological and swarm-based models |
Back to Top |
-
M. Simpson, K. Landman, & D. Newgreen (2006)
[pdf file]
Chemotactic and diffusive migration on a nonuniformly growing domain: numerical algorithm development and applications
Journal of Computational and Applied Mathematics
192, 2006, 282-300.
-
M. Simpson & K. Landman (2007)
[pdf file]
Nonmonotone chemotactic invasion: high-resolution simulation, phase plane analysis and new benchmark problems
Journal of Computational Physics
225, 2007, 6-12.
-
A. Chertock & A. Kurganov (2008)
[pdf file]
A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models
Numerische Mathematik
111(2), 2008, 169-206.
-
Alina Chertock, Alexander Kurganov, Xuefeng Wang, & Yaping Wu (2010)
[pdf file]
On a Chemotaxis Model with Saturated Chemotactic Flux
Kinetics and Related Models
-
Christos N. Mavridis, Amoolya Tirumalai and John S. Baras (2022)
[pdf file]
Learning Swarm Interaction Dynamics from Density Evolution
IEEE Transactions on Control of Network Systems
(doi) 2022
|
|
Applications of non-oscillatory central schemes to relativistic hydrodynamics |
Back to Top |
-
L. Del Zanna & N. Bucciantini (2002)
[pdf file]
An efficient shock-capturing central-type scheme for multidimensional relativistic flows. I. Hydrodynamics
Astronomy & Astrophysics
390, 2002, 1177-1186.
-
L. Del Zanna, N. Bucciantini, & L. Londrillo (2003)
[pdf file]
An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magentohydrodynamics
Astronomy & Astrophysics
400, 2003, 397-413.
-
A. Lucas-Serrano, J.A. Font, J.M. Ibez, & J.M. Mart (2004)
[pdf file]
Assessment of a high-resolution central scheme for the solution of the relativistic hydrodynamics equations
Astronomy and Astrophysics
428, 2004, 703-715.
-
M. Shibata & J.A. Font (2005)
[pdf file]
Robustness of a high-resolution central scheme for hydrodynamics simulations in general relativity
Physical Review D
72(4), 2005, 047501.
-
Jose A. Font (2007)
[pdf file]
General relativistic hydrodynamics and megnetohydrodynamics: hyperbolic systems in relativistic astrophysics
"Hyperbolic Problems: Theory, Numerics, Applications",
(Proceedings of the 11th international conference held at Lyon, Jul. 2006, (S. Benzoni-Gavage & D. Serre eds.)), 2007, 3-17.
-
E. Molnr, H. Niemi, & D. H. Rischke (2010)
[pdf file]
Numerical tests of causal relativistic dissipative fluid dynamics
The European Physical Journal C - Particles and Fields
65(3-4), 2010, 615-635.
-
Abdelaziz Beljadid & Philippe G. LeFloch (2017)
[pdf file]
A central-upwind geometry-preserving method for hyperbolic conservation laws on the sphere
|
|
Applications of non-oscillatory central schemes to elasticity and plasticity |
Back to Top |
-
A. Kurganov & M. Pollack (2011)
[pdf file]
Semi-discrete central-upwind schemes for elasticity in heterogeneous media
-
Amit Das, Amit Acharya, & Pierre Suquet (2016)
[pdf file]
Microstructure in plasticity without nonconvexity
|
|
Applications of non-oscillatory central schemes to thin film |
Back to Top |
-
Y. Ha, Y.-J. Kim, & T. G. Myers (2008)
[pdf file]
On the numerical solution of a driven thin film equation
J. Computational Physics
227, 2008, 7246-7263.
|
|
Applications of non-oscillatory central schemes to math modeling in finance |
Back to Top |
-
P. Arminjon, A. St-Cyr & A. Madrane (2002)
[pdf file]
New two- and three-dimensional non-oscillatory central finite volume methods on staggered Cartesian grids
Applied Numerical Mathematics
40, 2002, 367-390.
-
German I. Ramirez-Espinoza & Matthias Ehrhardt (2013)
[pdf file]
Conservative and finite volume methods for the convection-dominated pricing problem
Advances in Applied Mathematics and Mechanics
5(6), 2013, 759-790.
-
O. Bhatoo, A. Peer, E. Tadmor, D. Tangman, & A. Saib (2019)
[pdf file]
Efficient conservative second order central upwind schemes for option pricing problems
Journal of Computational Finance
22(5), 2019, 71-101.
-
O. Bhatoo, A. Peer, E. Tadmor, D. Tangman, & A. Saib (2019)
[pdf file]
Conservative third-order central-upwind schemes for option pricing problems
Vietnam Journal of Mathematics
47, 2019, 813-833.
|
|
Applications of non-oscillatory central schemes to various systems |
Back to Top |
-
F. Hoch & M. Rascle (1999)
[pdf file]
A numerical study of a pathological example of p-system
SIAM Journal of Numerical Analysis
36, 1999, 1588-1603.
-
A. Kurganov & E. Tadmor (2002)
[pdf file]
Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers
Numerical Methods for Partial Differential Equations
18, 2002, 548-608.
-
G.-Q. Chen & H. Liu (2004)
[pdf file]
Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids
Physica D
189, 2004, 141-165.
-
Alina Chertock, Alexander Kurganov & Yuri Rykov (2007)
[pdf file]
A new sticky particle method for pressureless gas dynamics
SIAM Journal on Numerical Analysis
45 (6), 2007, 2408-2441.
-
A. Kurganov & A, Polizzi (2009)
[pdf file]
Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics
Netowrks and Heterogeneous Media
4(3), 2009, 431-452.
-
Pierre Kestener, Frederic Chateau, & Romain Teyssier (2010)
[pdf file]
Accelerating Euler equations numerical solver on graphics processing units
(Preprint).
-
Alina Chertock, Charles R. Doering, Eugene Kashdan, & Alexander Kurganov (2010)
[pdf file]
A fast explicit operator splitting method for passive scalar advection
Journal of Sceintific Computing
45, 2010, 200-214.
-
Paola Goatin & Sheila Scialanga (2016)
[pdf file]
Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity
Networks and Heterogeneous Media
(doi) 11(1), 2016, 107-121.
-
Yedidia Neumeier, Abhishek Mishra, J. V. R. Prasad and Darrell K. James (2022)
[pdf file]
Modeling and simulation of unsteady flow in multistage compressors using interdomain boundaries
Journal of Propulsion and Power
(doi) 2022
|
|