Tamás Darvas
Professor, University of Maryland
I am a geometric analyst with a concentration of research on complex differential geometry. All my papers can be found in preprint form on the arXiv. I am also present on Google Scholar.
Relative pluripotential theory on compact Kähler manifolds, with E. Di Nezza, C. H. Lu, preprint, to appear in Pure. Appl. Math. Q. 21 (2025), no. 3, pp. 1037-1118. arXiv:2303.11584
Geometric pluripotential theory on Kähler manifolds, Advances in complex geometry, 1-104, Contemp. Math. 735, Amer. Math. Soc., Providence, RI, 2019, arXiv:1902.01982
The trace operator of quasi-plurisubharmonic functions on compact Kähler manifolds, with M. Xia, preprint, arXiv:2403.08259
Transcendental Okounkov bodies, with R. Reboulet, M. Xia, D. Witt Nystrom, K. Zhang, preprint, arXiv:2309.07584
A transcendental approach to non-Archimedean metrics of pseudoeffective classes, with M. Xia, K. Zhang, preprint, to appear in Comment. Math. Helv. arXiv:2302.02541
Twisted Kähler-Einstein metrics in big classes, with K. Zhang, Comm. Pure Appl. Math. 77 (2024), no. 12, 4289--4327. arXiv:2208.08324
The volume of pseudoeffective line bundles and partial equilibrium, with M. Xia, Geom. and Topol. 28-4 (2024), 1957--1993 arXiv:2112.03827
The Mabuchi geometry of low energy classes, Math. Ann. 389 (2024), no. 1, 427--450. arXiv:2109.11581
The closures of test configurations and algebraic singularity types, with M. Xia, Adv. Math. 397 (2022), Paper No. 108198. arXiv:2003.04818
Griffiths extremality, interpolation of norms, and Kähler quantization, with K.-R. Wu, J. Geom. Anal. 32 (2022), no. 7, Paper No. 203. arXiv:1910.01782
The metric geometry of singularity types, with E. Di Nezza and C.H. Lu, J. Reine Angew. Math. 771 (2021), 137-170. arXiv:1909.00839
The isometries of the space of Kähler metrics, J. Eur. Math. Soc. 23 (2021), no. 12, 4091--4108. arXiv:1902.06124
Quantization in geometric pluripotential theory, with C.H. Lu and Y.A. Rubinstein, Comm. Pure Appl. Math. 73 (2020), no. 5, 1100-1138 arXiv:1809.03800
L^1 metric geometry of big cohomology classes, with E. Di Nezza and C.H. Lu, Ann. Inst. Fourier (Grenoble) 68 (2018), no. 7, 3053-3086. arXiv:1802.00087
Compactness of Kähler metrics with bounds on Ricci curvature and I functional, with X.X. Chen and W. He, Calc. Var. PDE 58 (2019), no. 4, Paper No. 139. arXiv:1712.05095
Convergence of the Kähler-Ricci iteration, with Y.A. Rubinstein, Analysis & PDE 12 (2019), no. 3. 721-735. arXiv:1705.06253
Monotonicity of non-pluripolar products and complex Monge-Ampere equations with prescribed singularity, with E. Di Nezza and C.H. Lu, Analysis & PDE 11 (2018), no. 8. arXiv:1705.05796
A minimum principle for Lagrangian graphs, with Y.A. Rubinstein, Comm. Anal. Geom. 27 (2019), no. 4, 857-876. arXiv:1606.08818
On the singularity type of full mass currents in big cohomology classes, with E. Di Nezza and C.H. Lu, Compos. Math. 154 (2018), no. 2, 380-409. arXiv:1606.01527
Regularity of weak minimizers of the K-energy and applications to properness and K-stability, with R. Berman and C.H. Lu, Ann. Sci. Ec. Norm. Super. 53 (2020), no. 4, 267-289, arXiv:1606.03114
Metric geometry of normal Kähler spaces, energy properness, and existence of canonical metrics, IMRN (2017), no. 22, 6752-6777. arXiv:1604.07127
Comparison of the Calabi and Mabuchi geometries and applications to geometric flows, Ann. Inst. H. Poincare Anal. Non Lineaire 34 (2017), no. 5, 1131-1140. arXiv:1602.04309
Convexity of the extended K-energy and the long time behavior of the Calabi flow, with R.J. Berman and C.H. Lu, Geom. and Topol. 21 (2017), no. 5, 2945-2988. arXiv:1510.01260
Tian's properness conjectures and Finsler geometry of the space of Kähler metrics, with Y.A. Rubinstein, J. Amer. Math. Soc. 30 (2017), no. 2, 347-387. arXiv:1506.07129
Geodesic rays and Kähler-Ricci trajectories on Fano manifolds, with W. He, Trans. Amer. Math. Soc. 369 (2017), no. 7, 5069-5085. arXiv:1411.0774
The Mabuchi geometry of finite energy classes, Adv. Math. 285 (2015), 182-219. arXiv:1409.2072
Kiselman's principle, the Dirichlet problem for the Monge-Ampere equation, and rooftop obstacle problems, with Y.A. Rubinstein, J. Math. Soc. Japan 68 (2016), no. 2, 773-796. arXiv:1405.6548
The Mabuchi completion of the space of Kähler potentials, Amer. J. Math. 139 (2017), no. 5, 1275-1313. arXiv:1401.7318
Weak geodesic rays in the space of Kähler potentials and the class E(X,ω), J. Inst. Math. Jussieu 16 (2017), no. 4, 837-858. arXiv:1307.6822
Morse theory and geodesics in the space of Kähler metrics, Proc. Amer. Math. Soc. 142 (2014), no. 8, 2775-2782. arXiv:1207.4465
Weak geodesics in the space of Kähler metrics, with L. Lempert, Math. Res. Lett. 19 (2012), no. 5, 1127-1135. arXiv:1205.0840
RESEARCH PAPERS WITH UNDERGRADUATES:
The Hausdorff distance and metrics on toric singularity types, with A. Aitokhuehi, B. Braiman, D. Cutler, R. Deaton, P. Gupta, J. Horsley, V. Pidaparthy, J. Tang, preprint, arXiv:2411.11246
Extremizers of the J functional with respect to the d_1 metric, with S. Bachhuber, A. Benda, B. Christophel, Analysis Math. 48 (2022), no. 2, 307-330. arXiv:2304.06323
Optimal asymptotic of the J functional with respect to the d_1 metric, with E. George and K. Smith, Selecta Math. (N.S.) 28 (2022), no. 2, Paper No. 43. arXiv:2101.02589