List of publications [by subject classification]
Other lists of publications: [by chronological order]
[selected]
[significant ]
[ArXiv publications]
|
- Reviews, Chapters in Books and Books
- Stability of time-dependent schemes (linear)
- Hyperbolic problems
- Convection diffusion problems
- Collective dynamics
- Nonlinear conservation laws and related equations
- Approximate methods for nonlinear PDEs
- Non-oscillatory central schemes
- Spectral methods
- Signal and image processing
- Matrix theory and computations
|
Back to Top
|
Reviews, Chapters in Books and Books
|
-
E. Tadmor
Entropy stable schemes
Handbook of Numerical Methods for Hyperbolic problems. Part A to appear.
-
E. Tadmor
A review of numerical methods for nonlinear partial differential equations
Bull. AMS, 49(4) (2012) 507-554.
-
E. Tadmor
Selected topics in approximate solutions of nonlinear conservation laws. High-resolution central schemes
``Nonlinear Conservation Laws and Applications'' (A. Bressan, G-Q. Chen, M. Lewicka and D. Wang, eds), IMA Volumes in Mathematics and its Applications #153, Springer NY,
(2011), pp. 101-122.
-
B. Cheng & E. Tadmor
Approximate periodic solutions for the rapidly rotating shallow-water and related equations
``Water Waves. Theory and Experiment'', Proceedings of the Conference held in
Howard University, May 2008 (M. F. Mahmood, D. Henderson, H. Segur, eds), World Scientific (2010), pp. 69-78.
-
E.Tadmor, J.-G. Liu & A. Tzavaras
[AMS online catalogue]
[Table of content ]
Hyperbolic Problems: Theory, Numerics, Applications
Proceedings of the Twelfth International Conference on Hyperbolic Problems
held at the University of Maryland, College Park, June 9-13, 2008, AMS Proc. Symp. Appl. Math., 2009
Vol. 67.1: Plenary & Invited Talks, ISBN: 978-0-8218-4729-9
Vol. 67.2: Contributed Talks, ISBN: 978-0-8218-4730-5.
-
E. Tadmor & W. Zhong
Energy-preserving and stable approximations for the two-dimensional shallow water equations
``Mathematics and Computation - A Contemporary View",
Proceedings of the third Abel Symposium held in Ålesund Norway May 2006
(H. Munthe-Kaas and B. Owren eds.), Abel Symposia 3, Springer (2008) 67-94.
-
E. Tadmor
Filters, mollifiers and the computation of the Gibbs phenomenon
Acta Numerica v. 16 (2007) 305-378.
-
E. Tadmor
Entropy stability theory for difference approximations of nonlinear conservation laws and
related time dependent problems
Acta Numerica v. 12 (2003), 451-512.
-
T. Hou & E. Tadmor
[Springer online catalogue]
[Table of content]
Hyperbolic Problems: Theory, Numerics, Applications
Proceedings of the Ninth International Conference on Hyperbolic Problems held in CalTech, Pasadena,
March 25-29, 2002, Springer-Verlag (2003) ISBN: 3-540-44333-9.
-
E. Tadmor
High resolution methods for time dependent problems with piecewise smooth solutions
"International Congress of Mathematicians", Proceedings of the ICM02 Beijing 2002 (Li Tatsien, ed.),
Vol. III: Invited lectures, Higher Education Press, (2002) 747-757.
-
E. Tadmor
Approximate solution of nonlinear conservation laws and related
equations
``Recent Advances in Partial Differential Equations and Applications"
Proceedings of the 1996 Venice Conference in honor of Peter D. Lax
and Louis Nirenberg on their 70th Birthday
(R. Spigler and S. Venakides eds.),
AMS Proceedings of Symposia in Applied Mathematics, 54
(1998) 325-368.
-
E. Tadmor
[html file]
Approximate solutions of nonlinear conservation laws
``Advanced Numerical Approximation of Nonlinear Hyperbolic Equations"
C.I.M.E. course in Cetraro, Italy, June 1997 (A. Quarteroni ed.),
Lecture notes in Mathematics 1697, Springer Verlag (1998) 1-149.
-
E. Tadmor
Spectral methods for hyperbolic problems
``Methodes numeriques d'ordre eleve
pour les ondes en regime transitoire",
Lecture notes delivered at
Ecole des Ondes, INRIA - Rocquencourt, January 24-28 (1994).
-
E. Tadmor
Super viscosity and spectral approximations of nonlinear conservation laws
``Numerical Methods for Fluid
Dynamics IV", Proceedings of the 1992 Conference on Numerical Methods
for Fluid Dynamics, (M. J. Baines and K. W. Morton, eds.),
Clarendon Press, Oxford (1993) 69-82.
-
E. Tadmor
Stability analysis of finite-difference, pseudospectral
and Fourier-Galerkin approximations for time-dependent problems
SIAM Review 29 (1987), 525-555.
-
D. Gottlieb & E. Tadmor
[MR 90a:65041]
Recovering pointwise values of discontinuous data
within spectral accuracy
``Progress and Supercomputing in Computational Fluid Dynamics",
Proceedings of a 1984 U.S.-Israel Workshop, Progress in Scientific
Computing, Vol. 6 (E. M. Murman and S. S. Abarbanel, eds.), Birkhauser,
Boston (1985), 357-375.
|
Back to Top
|
Stability of Runge-Kutta schemes
|
- E. Tadmor
On the stability of Runge-Kutta methods for arbitrarily large systems of ODEs
Communications on Pure & Applied Mathematics (2024).
-
E. Tadmor
From semi-discrete to fully discrete: stability of Runge-Kutta schemes by
the energy method. II
``Collected Lectures on the Preservation of Stability under Discretization'',
Lecture Notes from Colorado State University Conference, Fort Collins, CO, 2001
(D. Estep and S. Tavener, eds.) Proceedings in Applied Mathematics 109, SIAM 2002, 25-49.
-
S. Gottlieb, C.-W. Shu & E. Tadmor
Strong stability-preserving high order time discretization methods
SIAM Review 43 (2001) 89-112.
-
D. Levy & E. Tadmor
From semi-discrete to fully-discrete: stability of Runge-Kutta schemes
by the energy method
SIAM Review 40 (1998) 40-73.
|
Back to Top
|
Stability of difference and spectral approximations for initial value problems
|
-
E. Tadmor
Spectral methods for hyperbolic problems
"Methodes numeriques d'ordre eleve
pour les ondes en regime transitoire",
Lecture notes delivered at
Ecole des Ondes, Inria - Rocquencourt January 24-28 (1994).
-
E. Tadmor
Stability analysis of finite-difference, pseudospectral
and Fourier-Galerkin approximations for time-dependent problems
SIAM Review 29 (1987), 525-555.
|
Back to Top
|
Stability of difference approximations for initial-boundary value problems
|
-
M. Goldberg E. Tadmor
Simple stability criteria for difference approximations
of hyperbolic initial-boundary value problems
``Nonlinear Hyperbolic Equations - Theory, Computation Methods, and
Applications", Proceedings of the 2nd International Conference on
Nonlinear Hyperbolic Problems, Notes on Numerical Fluid Mechanics,
Vol. 24 (J. Ballmann and R. Jeltsch eds.), Vieweg Verlag (1988), 179-185.
-
M. Goldberg & E. Tadmor
Convenient stability criteria for difference approximations
of hyperbolic initial-boundary value problems. II
Mathematics of Computation 48 (1987), 503-520.
-
M. Goldberg & E. Tadmor [MR 87b:65144]
New stability criteria for difference approximations of
hyperbolic initial-boundary value problems
``Large-Scale Computations in Fluid Mechanics",
Proceedings of the 15th AMS-SIAM Summer Seminar on Applied Mathematics held in Script Institute,
San Diego, July 1983, Lectures in Applied
Mathematics, Vol. 22-Part 1 (B. E. Engquist, S. Osher, and R. C. J.
Somerville, eds.), American Mathematical Society, Rhode Island, (1985), 177-192.
-
M. Goldberg & E. Tadmor
Convenient stability criteria for difference approximations
of hyperbolic initial-boundary value problems
Mathematics of Computation 44 (1985), 361-377.
-
E. Tadmor
The unconditional instability of inflow-dependent boundary conditions in
difference approximations to hyperbolic systems
Mathematics of Computation 41 (1983), 309-319.
-
E. Tadmor
The unconditional instability of inflow-dependent boundary conditions
in difference approximations to hyperbolic systems
``Numerical Boundary Condition Procedures", Proceedings of the 1981 NASA
Ames Research Center Symposium on Numerical Boundary Condition Procedures
(P. Kutler, ed.), NASA Ames (1982) 323-332.
-
M. Goldberg & E. Tadmor
Scheme-independent stability criteria for difference
approximations of hyperbolic initial-boundary value problems. II
Mathematics of Computation 36 (1981), 603-626.
-
M. Goldberg & E. Tadmor
Scheme-independent stability criteria for difference
approximations of hyperbolic initial-boundary value problems. I
Mathematics of Computation 32 (1978), 1097-1107.
|
Back to Top
|
Hyperbolic problems. Systems with different time scales
|
-
E.Tadmor, J.-G. Liu & A. Tzavaras
[AMS online catalogue]
[Table of content]
Hyperbolic Problems: Theory, Numerics, Applications
Proceedings of the Twelfth International Conference on Hyperbolic Problems
held at the University of Maryland, College Park, June 9-13, 2008, AMS Proc. Symp. Appl. Math. (2009)
Vol. 67.1: Plenary & Invited Talks, ISBN: 978-0-8218-4729-9
Vol. 67.2: Contributed Talks, ISBN: 978-0-8218-4730-5.
-
T. Hou & E. Tadmor
[Springer online catalogue]
[Table of content]
Hyperbolic Problems: Theory, Numerics, Applications
Proceedings of the Ninth International Conference on Hyperbolic Problems held in CalTech, Pasadena,
March 25-29, 2002, Springer-Verlag (2003) ISBN: 3-540-44333-9.
-
E. Tadmor
Hyperbolic systems with different time scales
Communications on Pure and Applied Mathematics 35 (1982), 839-866.
|
Back to Top
|
Convection diffusion problems. Regularity and homogenization
|
- S. He, E. Tadmor & A. Zlatoš
On the fast spreading scenario
Communications of the AMS 2 (2022) 149-171.
-
S. He & E. Tadmor
Multi-species Patlak-Keller-Segel system
Indiana University Math Journal 70(4) (2021) 1577-1624.
-
S. He & E. Tadmor
Suppressing chemotactic blow-up through a fast splitting scenario on the plane
Archive for Rational Mechanics and Analysis 232 (2019) 951-986.
-
A. Biswas & E. Tadmor
Dissipation versus quadratic nonlinearity: from a priori energy bound to higher-order regularizing effect
Nonlinearity 27 (2014) 545-562.
-
E. Tadmor
Burgers' equation with vanishing hyper-viscosity
Communications in Math. Sciences 2(2)(2004) 317-324.
-
E. Tadmor & T. Tassa
On the homogenization of oscillatory solutions to scalar
convection-diffusion equations
Advances in Mathematical Sciences and Applications 7(1) (1997), 93-117.
-
E. Tadmor
The well-posedness of the Kuramoto-Sivashinsky equation
SIAM Journal on Mathematical Analysis 17 (1986), 884-893.
|
Back to Top
|
Incompressible Euler, Navier-Stokes and related equations
|
-
H. Bae, A. Biswas & E. Tadmor
Analyticity and decay estimates of the Navier-Stokes equations in critical Besov spaces
Archive for Rational Mechanics and Analysis 205 (2012), 963-991.
-
E. Tadmor
On a new scale of regularity spaces with applications to Euler's equations
Nonlinearity 14 (2001), 513-532.
-
M. Lopes Filho, H. J. Nussenzveig & E. Tadmor
Approximate solutions of the incompressible Euler equations with no
concentrations
Annales de l'institut Henri Poincare (c) Non Linear Analysis 17 (2000), 371-412.
|
Back to Top
|
Critical threshold phenomena in Eulerian dynamics
|
- Y.-P. Choi, D.-h. Kim, D. Koo & E. Tadmor
Critical thresholds in pressureless Euler-Poisson equations with background states
ArXiv:2402.12839 (2024).
- E. Tadmor & C. Tan
Critical threshold for global regularity of Euler-Monge-Ampère system with radial symmetry
SIAM Journal on Mathematical Analysis 54(4) (2022) 4277-4296 .
-
D. Wei, E. Tadmor & H. Bae
Critical thresholds in multi-dimensional Euler-Poisson equations with radial symmetry
Communications in Mathematical Sciences 10(1) (2012), 75-86.
-
H. Liu, E. Tadmor & D. Wei
Global regularity of the 4D Restricted Euler Equations
Physica D 239 (2010) 1225-1231.
-
B. Cheng & E. Tadmor
An improved local blow-up condition for Euler-Poisson equations with attractive forcing
Physica D 238 (2009) 2062-2066.
-
D. Chae & E. Tadmor
On the finite time blow-up of the Euler-Poisson equations in Rn
Communications in Mathematical Sceinces 6(3) (2008) 785-789.
-
B. Cheng & E. Tadmor
Long time existence of smooth solutions for the rapidly rotating shallow-water and Euler equations
SIAM Journal on Mathematical Analysis 39(5) (2008) 1668-1685.
-
E. Tadmor & D. Wei
On the global regularity of sub-critical Euler-Poisson equations with pressure
Journal of the European Mathematical Society 10 (2008) 757-769.
-
H. Liu & E. Tadmor
Rotation prevents finite-time breakdown
Physica D 188 (2004) 262-276.
-
H. Liu & E. Tadmor
Critical thresholds and conditional stability for Euler equations and related models
``Hyperbolic Problems: Theory, Numerics, Applications'',
Proceedings of the 9th International Conference in
Pasadena, Mar. 2002 (T. Hou and E. Tadmor, eds.), Springer (2003) 227-240.
-
H. Liu & E. Tadmor
Critical thresholds in 2D restricted Euler-Poisson equations
SIAM Journal of Applied Mathematics63 (2003) 1889-1910.
-
H. Liu & E. Tadmor
Semi-classical limit of the nonlinear Schrödinger-Poisson
equation with sub-critical initial data
Methods and Applications in Analysis 9(4) (2002), 517-532.
-
H. Liu & E. Tadmor
Spectral dynamics of the velocity gradient field in restricted flows
Communications in Mathematical Physics 228 (2002), 435-466.
-
H. Liu & E. Tadmor
Critical thresholds in a convolution model for
nonlinear conservation laws
SIAM Journal on Mathematical Analysis 33 (2001), 930-945.
-
S. Engelberg, H. Liu & E. Tadmor
Critical thresholds in Euler-Poisson equations
Indiana University Math journal 50 (2001), 109-157..
|
Back to Top
|
Nonlinear conservation laws. Entropy and regularity
|
-
A. Gouasmi, K. Duraisamy, S. M. Murman & E. Tadmor
A minimum entropy principle in the compressible multicomponent Euler equations
Mathematical Modelling and Numerical Analysis 54 (2020) 373-389.
-
K. Karlsen, M. Rascle & E. Tadmor
On the existence and compactness of a two-dimensional
resonant system of conservation laws
Communications in Mathematical Sciences 5(2) (2007) 253-265.
-
E. Tadmor, M. Rascle & P. Bagnerini
Compensated compactness for 2D conservation laws
Journal of Hyperbolic Differential Equations 2(3) (2005) 697-712.
-
E. Tadmor & T. Tassa
On the piecewise regularity of entropy solutions to scalar
conservation laws
Communications on Partial Differential Equations 18 (1993), 1631-1652.
-
E. Tadmor
Entropy functions for symmetric systems of conservation laws
Journal of Mathematical Analysis and Applications 122(2) (1987), 355-359.
-
E. Tadmor
A minimum entropy principle in the gas dynamics equations
Applied Numerical Mathematics 2 (1986), 211-219.
|
Back to Top
|
Collective dynamics: swarming, emergence and swarm-based optimization
|
- J. Lu, E. Tadmor & A. Zenginoglu
Swarm-based gradient descent method for non-convex optimization
Communications of the AMS
ArXiv:2211.17157 (2024).
- Z. Ding, M. Guerra, Q. Li & E. Tadmor
Swarm-based gradient descent meets simulated annealing
SIAM Journal on Numerical Analsysis
ArXiv2404.18015 (2024).
- E. Tadmor & A. Zenginoglu
Swarm-based optimization with random descent
Acta Applicandae Mathematicae 190(2) (2024).
- J. Greene, E. Tadmor & M. Zhong (2023)
The emergence of lines of hierarchy in collective motion of
biological systems
Physical Biology 20 (2023) 055001.
- E. Tadmor
Swarming: hydrodynamic alignment with pressure
Bulletin of AMS 60(3) (2023) 285-325.
- E. Tadmor
Long time and large crowd dynamics of discrete Cucker-Smale alignment models
Pure and Applied Functional Analysis 8(2) (2023) 603-626.
- J. Lu & E. Tadmor
Hydrodynamic alignment with pressure II. Multispecies
Quarterly of Applied Mathematics 81(2) (2023) 259-279.
- D. Lear, T. M. Leslie, R. Shvydkoy & E. Tadmor
Geometric structure of mass concentration sets for pressureless Euler alignment systems
Advances in Mathmematics 401(4) (2022) 108290.
- D. Hardin, E. Saff, R. Shu & E. Tadmor
Dynamics of particles on a curve with pairwise hyper-singular repulsion
Discrete & Continuous Dynamical Systems 41(12) (2021) 5509-5536.
- R. Shu & E. Tadmor
Newtonian repulsion and radial confinement: convergence towards steady state
Mathematical Models and Methods in Applied Sciences 31(7) (2021) 1297-1321.
- R. Shvydkoy & E. Tadmor
Multi-flocks: emergent dynamics in systems with multi-scale collective behavior
Multiscale Modeling and Simulation 19(2) (2021) 1115-1141.
-
S. He & E. Tadmor
A game of alignment: collective behavior of multi-species
Annal. de l'institut Henri Poincare (c) Non Linear Analysis 38(4) (2021) 1031-1053.
- E. Tadmor
On the mathematics of swarming: emergent behavior in alignment dynamics
Notices of the AMS 68(4) (2021) 493-503.
-
R. Shu & E. Tadmor
Anticipation breeds alignment
Archive for Rational Mechanics and Analysis 240 (2021) 203-241.
-
R. Shvydkoy & E. Tadmor
Topologically-based fractional diffusion and emergent dynamics with short-range interactions
SIAM J. Math. Anal.52(6) (2020) 5792-5839.
-
R. Shu & E. Tadmor
Flocking hydrodynamics with external potentials
Archive for Rational Mechanics and Analysis 238 (2020) 347-381..
-
J. Morales, J. Peszek & E. Tadmor
Flocking with short-range interactions
Journal of Statistical Physics 176 (2019) 382-397.
-
R. Shvydkoy & E. Tadmor
Eulerian dynamics with a commutator forcing III: Fractional diffusion of order 0<α<1
Physica D 376-377 (2018) 131-137.
-
R. Shvydkoy & E. Tadmor
Eulerian dynamics with a commutator forcing II: flocking
Discrete and Continuous Dynamical Systems-A 37(11) (2017) 5503-5520.
-
S. He & E. Tadmor
Global regularity of two-dimensional flocking hydrodynamics
Comptes rendus - Mathématique
Ser. I 355 (2017) 795–805.
-
R. Shvydkoy & E. Tadmor
Eulerian dynamics with a commutator forcing
(with erratum)
Transactions of Mathematics and its Applications 1(1) (2017) 1-26.
-
J. A. Carrillo, Y.-P. Choi E. Tadmor & C. Tan
Critical thresholds in 1D Euler equations with nonlocal forces
Mathematical Models and Methods in Applied Sciences 26(1) (2016) 185-206.
-
E. Tadmor
Mathematical aspects of self-organized dynamics: consensus, emergence of leaders, and social hydrodynamics
SIAM News 48(9) 2015.
-
C. Tan & E. Tadmor
Critical thresholds in flocking hydrodynamics with nonlocal alignment
Proceedings of the Royal Society A 372:20130401 (2014).
-
S. Motsch & E. Tadmor
Heterophilious dynamics enhances consensus
SIAM Review 56(4) (2014) 577–621.
-
S. Motsch & E. Tadmor
A new model for self-organized dynamics and its flocking behavior
Journal of Statistical Physics 144(5) (2011) 923-947.
-
S.-Y. Ha & E. Tadmor
From particle to kinetic and hydrodynamic descriptions of flocking
Kinetic and Related Models 1(3) (2008) 415-435.
|
Kinetic formulations and velocity avergaing
|
-
P.-E Jabin, H.-Y. Lin & E. Tadmor
Commutator method for averaging lemmas
Analysis & PDE 15(6) (2022) 1561-1584
A new commutator method for averaging lemmas
Séminaire Laurent Schwartz — EDP et applications (2019-2020), Talk no. 10 (2020).
-
B. Gess, J. Sauer & E. Tadmor
Optimal regularity in time and space for the porous medium equation
Analysis & PDE 13(8) (2020) 2441-2480.
-
E. Tadmor & T. Tao
Velocity averaging, kinetic formulations and regularizing effects in quasilinear PDEs
Communications on Pure & Applied Mathematics 60 (2007), 1488-1521.
-
P.-L. Lions, P. Perthame & E. Tadmor
Kinetic formulation of the isentropic gas dynamics and p-systems
Communications in Mathematical Physics 163 (1994), 415-431.
-
P.-L. Lions, P. Perthame & E. Tadmor
A kinetic formulation of multidimensional scalar conservation
laws and related equations
Journal of the American Mathematical Society 7 (1994), 169-191.
-
S. Schochet & E. Tadmor
Regularized Chapman-Enskog expansion for scalar conservation laws
Archive for Rational Mechanics and Analysis 119 (1992), 95-107.
-
P.-L. Lions, B. Perthame & E. Tadmor
[MR 91k:35156]
Formulation cinétique des lois de conservation scalaires
multidimensionelles
Comptes Rendus de l'Académie des Sciences, Paris, Série I (1991), 97-102.
-
B. Perthame & E. Tadmor
A kinetic equation with kinetic entropy functions for scalar
conservation Laws
Communications in Mathematical Physics, 136 (1991), 501-517.
|
Back to Top
|
Approximate methods for nonlinear PDEs. Reviews
|
-
E. Tadmor
Entropy stability theory for difference approximations of nonlinear conservation laws and
related time dependent problems
Acta Numerica v. 12 (2003), 451-512.
-
E. Tadmor
High resolution methods for time dependent problems with piecewise smooth solutions
``International Congress of Mathematicians", Proceedings of the ICM02 Beijing 2002 (Li Tatsien, ed.),
Vol. III: Invited lectures, Higher Education Press (2002) 747-757.
-
E. Tadmor
[html file]
Approximate solutions of nonlinear conservation laws
``Advanced Numerical Approximation of Nonlinear Hyperbolic Equations",
C.I.M.E. course in Cetraro, Italy, June 1997 (A. Quarteroni ed.),
Lecture notes in Mathematics 1697, Springer Verlag (1998) 1-149.
-
E. Tadmor
Approximate solution of nonlinear conservation laws and related
equations
``Recent Advances in Partial Differential Equations and Applications"
Proceedings of the 1996 Venice Conference in honor of Peter D. Lax
and Louis Nirenberg on their 70th Birthday
(R. Spigler and S. Venakides eds.),
AMS Proceedings of Symposia in Applied Mathematics 54
(1998) 325-368.
|
Back to Top
|
Finite difference approximations.
Total-variation and entropy stability
|
-
U. Fjordholm, R. Kappeli, S. Mishra & E. Tadmor
Construction of approximate entropy measure valued solutions for hyperbolic systems of conservation laws
Foundations of Computational Mathematics 17 (2017) 763–827.
- E. Tadmor
Entropy stable schemes
Handbook of Numerical Methods for Hyperbolic problems. Vol. XVII (R. Abgrall and C.-W. Shu, eds), Elsevier (2016) pp. 467-493.
- U. Fjordholm, S. Mishra & E. Tadmor
On the computation of measure-valued solutions
Acta Numerica 25 (2016) 567-679.
-
E. Tadmor
Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws
Discrete and Continuous Dynamical Systems-A 36(8) (2016) 4579-4598.
-
U. Fjordholm, S. Mishra & E. Tadmor
Entropy stable ENO scheme
``Hyperbolic Problems: Theory, Numerics, Applications'',
Proceedings of the 13th International Conference held in
Beijing, June 2010 (T. Li & S. Jiang, eds.), vol 1, Contemporary Appl. Math. 17, Higher Ed. Press (2012) 12-27.
-
U. Fjordholm, S. Mishra & E. Tadmor
ENO reconstruction and ENO interpolation are stable(+errata)
Foundations of Computational Mathematics 13(2) (2012), 139-159.
-
U. Fjordholm, S. Mishra & E. Tadmor
Arbitrarily high order accurate entropy stable essentially non-oscillatory schemes for systems of conservation laws
SIAM Jounral on Numerical Analysis 50(2), (2012) 544-573.
-
U. Fjordholm, S. Mishra & E. Tadmor
Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography
Journal of Computational Physics 230 (2011), 5587-5609.
-
M. Lukacova - Medvidova & E. Tadmor
On the entropy stability of Roe-type finite volume methods
``Hyperbolic Problems: Theory, Numerics, Applications'',
Proceedings of the 12th International Conference held in
University of Maryland, June 2008 (E. Tadmor, J.-G. Liu & A. Tzavaras, eds.),
AMS Proc. Symp. Applied Math., 67(2) (2009) 765-774.
-
A. Madrane & E. Tadmor
Entropy stability of Roe-type upwind finite volume methods on unstructured grids
``Hyperbolic Problems: Theory, Numerics, Applications'',
Proceedings of the 12th International Conference held in
University of Maryland, June 2008 (E. Tadmor, J.-G. Liu & A. Tzavaras, eds.),
AMS Proc. Symp. Applied Math., 67(2) (2009) 775-784.
-
U. Fjordholm, S. Mishra & E. Tadmor
Energy preserving and energy stable schemes for the shallow water equations
``Foundations of Computational Mathematics",
Proceedings of FoCM held in Hong Kong 2008 (F. Cucker, A. Pinkus & M. Todd, eds),
London Math. Soc. Lecture Notes Ser. 363, (2009) 93-139.
-
E. Tadmor & W. Zhong
Energy-preserving and stable approximations for the two-dimensional shallow water equations
``Mathematics and Computation - A Contemporary View",
Proceedings of the Third Abel Symposium held in Ålesund,
Norway May 2006 (H. Munthe-Kaas & B. Owren eds.), Springer (2008) 67-94.
-
E. Tadmor & W. Zhong
Novel entropy stable schemes for 1D and 2D fluid equations
``Hyperbolic Problems: Theory, Numerics, Applications'',
Proceedings of the 11th International Conference in
Lyon, July 2006 (S. Benzoni-Gavage and D. Serre, eds.), Springer (2007) 1111-1120.
-
E. Tadmor & W. Zhong
Entropy stable approximations of Navier-Stokes equations with no artificial numerical viscosity
J. of Hyperbolic Differential Equations 3(3) (2006) 529-559.
-
E. Tadmor
On the entropy stability of difference schemes: a comparison principle
and a homotopy approach
``Hyperbolic Problems: Theory, Numerics, Applications'', vol. I.,
Proceedings of the 10th International Conference, Osaka, Sep. 2004
(F. Asukura, H. Aiso, S. Kawashima, A. Matsumura, S. Nishibata & K. Nishihara, eds.),
Yokohama Publishers, (2006) 195-204.
-
E. Tadmor
Convenient total variation diminishing conditions for
nonlinear difference schemes
SIAM Journal on Numerical Analysis 25 (1988), 1002-1014.
-
S. Osher & E. Tadmor
On the convergence of difference approximations to scalar
conservation laws
Mathematics of Computation 50 (1988), 19-51.
-
E. Tadmor
The entropy dissipation by numerical viscosity in
nonlinear conservative difference schemes
``Nonlinear Hyperbolic Problems'', Proceedings of a 1986 Advanced
Research Workshop, Lecture Notes in Mathematics, Vol. 1270 (C. Carasso,
P.-A. Raviart and D. Serre, eds.), Springer-Verlag, 1987, pp. 52-63.
-
E. Tadmor
The numerical viscosity of entropy stable schemes for
systems of conservation laws. I.
Mathematics of Computation 49 (1987), 91-103 [consult NASA Langley Report:
"CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences" (references [87],[88])]
-
E. Tadmor
Entropy conservative finite element schemes
``Numerical Methods for Compressible Flows - Finite Difference Element
and Volume Techniques", Proceedings of the winter annual meeting of the
American Society of Mechanical Engineering (T. E. Tezduyar and
T.J.R. Hughes, eds.), AMD-Vol. 78 (1986), 149-158.
-
E. Tadmor
Skew self-adjoint form for systems of conservation laws
Journal of Mathematical Analysis and Applications 103(2) (1984) 428-442.
-
E. Tadmor
Numerical viscosity and the entropy condition for conservative
difference schemes
Mathematics of Computation 43 (1984), 369-381.
-
E. Tadmor
The large-time behavior of the scalar, genuinely nonlinear
Lax-Friedrichs scheme
Mathematics of Computation 43 (1984), 353-368.
|
Back to Top
|
Potential-based approximations of constraint transport equations
|
-
S. Mishra & E. Tadmor
Constraint preserving schemes using potential-based fluxes. III. Genuinely multi-dimensional schemes
for the MHD equations
Mathematical Modeling and Numerical Analysis 46 (2012) 661-680.
-
S. Mishra & E. Tadmor
Constraint preserving schemes using potential-based fluxes. II. Genuinely multi-dimensional systems of conservation laws
SIAM Journal on Numerical Analysis 49(3) (2011) 1023-1045.
-
S. Mishra & E. Tadmor
Constraint preserving schemes using potential-based fluxes. I. Multidimensional transport equations
Communications in Computational Physics 9(3) (2010) 688-710.
-
S. Mishra & E. Tadmor
Potential-based, constraint preserving, genuinely multi-dimensional schemes for systems of conservation laws
``Nonlinear Partial Differenetial Equations'',
Proceedings of the 2008-2009 Special Year in Nonlinear PDEs held in
Center Advanced Study, Oslo (H. Holden & K. Karlsen, eds.), AMS
Contemporary Mathematics 526 (2010), 295-314.
-
S. Mishra & E. Tadmor
Vorticity preserving schemes using potential-based fluxes for the system wave equation
``Hyperbolic Problems: Theory, Numerics, Applications'',
Proceedings of the 12th International Conference held in
University of Maryland, June 2008 (E. Tadmor, J.-G. Liu & A. Tzavaras, eds.),
AMS Proc. Symp. Applied Math., 67(2) (2009) 795-804
Back to Top
|
Approximation of nonlinear conservation laws. Convergence rate estimates
|
-
E. Tadmor & T. Tang
Pointwise error estimates for relaxation approximations to
conservation laws
SIAM Journal on Mathematical Analysis 32 (2001), 870-886.
-
C.-T. Lin & E. Tadmor
L1-stability and error estimates for approximate Hamilton-Jacobi
solutions
Numerische Mathematik 87 (2001) 701-735.
-
E. Tadmor & T. Tang
Pointwise convergence rate for nonlinear conservation laws
``Hyperbolic Problems: Theory, Numerics, Applications'', Proceedings
of the 7 th International Conference in Zurich, Feb. 1998 (M. Fey and
R. Jeltsch, eds.), Int'l Series Numer. Math., Vol. 130,
Birkhauser (1999) 925-934.
-
E. Tadmor & T. Tang
Pointwise error estimates for scalar conservation laws
with piecewise smooth solutions
SIAM Journal on Numerical Analysis 36 (1999) 1739-1756.
-
A. Kurganov & E. Tadmor
Stiff systems of hyperbolic conservation laws: convergence and error
estimates
SIAM Journal on Mathematical Analysis, 28 (1997) 1446-1456.
-
H. Nessyahu, E. Tadmor & T. Tassa
The convergence rate of Godunov type schemes
SIAM Journal on Numerical Analysis, 31 (1994), 1-16.
-
H. Nessyahu & E. Tadmor
The convergence rate of approximate solutions for nonlinear scalar
conservation laws
SIAM Journal on Numerical Analysis, 29 (1992), 1505-1519.
-
E. Tadmor
Local error estimates for discontinuous solutions of nonlinear
hyperbolic equations
SIAM Journal on Numerical Analysis, 28 (1991), 891-906.
|
Back to Top
|
Non-oscillatory central schemes. I. Nonlinear conservation laws
|
- J. Lu & E. Tadmor
Revisiting high-resolution schemes with van-Albada slope limiter
Communications on Applied Mathematics and Computation 6 (2024) 1924–1953.
-
O. Bhatoo, A. Peer, E. Tadmor, D. Tangman & A. Saib
Conservative third-order central-upwind schemes
for option pricing Pproblems
Vietnam Journal of Mathematics 47 (2019) 813-833.
- O. Bhatoo, A. Peer, E. Tadmor, D. Tangman & A. Saib
Efficient conservative second order central upwind schemes for
option pricing problems
Journal of Computational Finance, 22(5) (2019) 71-101.
-
A. Chertock, S. Cui, A. Kurganov, S.-N. Özcan & E. Tadmor
Well-balanced schemes for the Euler equations with gravitation: conservative formulation using global fluxes
Journal of Computational Physics 358 (2018) 36–52.
-
Y.-J. Liu, C.-W. Shu, E. Tadmor & M. Zhang
Central local discontinuous Galerkin methods
on overlapping cells for diffusion equations
Mathematical Modeling and Numerical Analysis 45 (2011) 1009-1032.
-
Y.-J. Liu, C.-W. Shu, E. Tadmor & M. Zhang
L2-stability analysis of the central discontinuous Galerkin method
and a comparison between the central and regular
discontinuous Galerkin methods
Mathematical Modeling and Numerical Analysis 42 (2008) 593-607
[highlighted paper].
-
Y.-J. Liu, C.-W. Shu, E. Tadmor & M. Zhang
Non-Oscillatory hierarchical reconstruction for central and finite volume schemes
Communications in Computational Physics 2(5) (2007) 933-963.
-
Y.-J. Liu, C.-W. Shu, E. Tadmor & M. Zhang
Central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction
SIAM Jounrnal on Numerical Analysis 45(6) (2007) 2442-2467.
-
J. Balbas & E. Tadmor
Non-oscillatory central schemes for one- and two-dimensional MHD
equations. II: high-order semi-discrete schemes
SIAM Journal on Scientific Computing 28 (2006) 533-560.
-
J. Balbas & E. Tadmor
A central differencing simulation of the Orszag-Tang vortex system
IEEE Transactions on Plasma Science, The 4th Triennial Special Issue on Images in Plasma Science 33(2) (2005) 470-471.
-
J. Balbas, E. Tadmor, & C.-C. Wu
[Numerical simulations]
Non-oscillatory central schemes for one- and two-dimensional MHD equations
Journal of Computational Physics 201 (2004) 261-285.
-
A. Kurganov & E. Tadmor
Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers
Numerical Methods for Partial Differential Equations, 18 (2002) 548-608.
-
A. Kurganov & E. Tadmor
New high-resolution central schemes for nonlinear conservation
laws and convection-diffusion equations
Journal of Computational Physics, 160 (2000) 214-282.
-
G.-S. Jiang, D. Levy, C.-T. Lin, S. Osher & E. Tadmor
High-resolution non-oscillatory central schemes with non-staggered
grids for hyperbolic conservation laws
SIAM Journal on Numerical Analysis, 35 (1998) 2147-2168.
-
D. Levy & E. Tadmor
Non-oscillatory boundary treatment for staggered central schemes
-
G.-S. Jiang & E. Tadmor
Non-oscillatory central schemes for multidimensional hyperbolic
conservation laws
SIAM Journal on Scientific Computing 19 (1998), 1892-1917.
-
X-D. Liu & E. Tadmor
Third order nonoscillatory central scheme for hyperbolic conservation laws
Numerische Mathematik 79 (1998), 397-425.
-
H. Nessyahu & E. Tadmor
Non-oscillatory central differencing for hyperbolic conservation laws
Journal of Computational Physics 87 (1990), 408-463.
|
Back to Top
|
Non-oscillatory central schemes. II. Incompressible Euler equations
|
-
D. Levy & E. Tadmor,
reprint with embedded figures:
,
preprint with original figures:
Non-oscillatory central schemes for the incompressible 2-D Euler equations
Mathematical Research Letters, 4(3) (1997) 321-340.
-
R. Kupferman & E. Tadmor
A fast high-resolution second-order central scheme for incompressible flows
Proceedings of the National Academy of Sciences 94 (1997) 4848-4852.
|
Back to Top
|
Non-oscillatory central schemes. III. Hamilton-Jacobi equations
|
-
C.-T. Lin & E. Tadmor
L1-stability and error estimates for approximate Hamilton-Jacobi
solutions
Numerische Mathematik 87 (2001) 701-735.
-
C.-T. Lin & E. Tadmor
High-resolution non-oscillatory central scheme for Hamilton-Jacobi
equations
SIAM Journal on Scientific Computation 21 (2000) 2163-2186.
-
A. Kurganov & E. Tadmor
New high-resolution semi-discrete central schemes for Hamilton-Jacobi
equations
Journal of Computational Physics 160 (2000) 720-742.
|
Back to Top
|
Spectral recovery and detection of edges in spectral data
|
-
E. Tadmor & J. Zou
Novel edge detection methods for incomplete and noisy spectral data
Journal of Fourier Analysis and Applications 14(5) (2008) 744-763.
-
S. Engelberg & E. Tadmor
Recovery of edges from spectral data with noise---a new perspective
SIAM Journal on Numerical Analysis 46(5) (2008) 2620-2635.
-
E. Tadmor
Filters, mollifiers and the computation of the Gibbs phenomenon
Acta Numerica 16 (2007) 305-378.
-
A. Gelb & E. Tadmor
Adaptive edge detectors for piecewise smooth data based on the minmod limiter
Journal of Scientific Computing 28(2-3) (2006) 279-306.
-
E. Tadmor & J. Tanner
Adaptive filters for piecewise smooth spectral data
IMA Journal of Numerical Analysis 25(4) (2005) 635-647.
-
E. Tadmor & J. Tanner
An adaptive order Godunov type central scheme
"Hyperbolic Problems: Theory, Numerics, Applications",
Proceedings of the 9th International Conference held in CalTech
Pasadena, Mar. 2002 (T. Hou and
E. Tadmor, eds.), Springer (2003) 871-880.
-
A. Gelb & E. Tadmor
Spectral reconstruction of one- and two-dimensional piecewise smooth functions from their
discrete data
Mathematical Modeling and Numerical Analysis 36 (2002) 155-175.
-
E. Tadmor & J. Tanner
Adaptive mollifiers -- high resolution recovery of piecewise smooth data from its
spectral information
Foundations of Computational Mathematics 2(2) (2002) 155-189.
-
A. Gelb & E. Tadmor
Detection of edges in spectral data II. Nonlinear enhancement
SIAM Journal on Mumerical Analysis 38 (2000), 1389-1408.
-
A. Gelb & E. Tadmor
Detection of edges in spectral data
Applied and Computational Harmonic Analysis 7 (1999) 101-135.
-
S. Abarbanel, D. Gottlieb & E. Tadmor
Spectral methods for discontinuous problems
"Numerical Methods for Fluid Dynamics II", Proceedings of the 1985
Conference on Numerical Methods for Fluid Dynamics (K. W. Morton and
M. J. Baines, eds.), Clarendon Press, Oxford (1986), 129-153.
-
E. Tadmor
The exponential accuracy of Fourier and Chebyshev differencing methods
SIAM Journal on Numerical Analysis 23 (1986), 1-10.
-
D. Gottlieb & E. Tadmor
[SIAM Rev 28(4) 1986] [MR 90a:65041]
Recovering pointwise values of discontinuous data
within spectral accuracy
&qout;Progress and Supercomputing in Computational Fluid Dynamics",
Proceedings of a 1984 U.S.-Israel Workshop, Progress in Scientific
Computing, Vol. 6 (E. M. Murman and S. S. Abarbanel, eds.), Birkhauser,
Boston (1985) 357-375.
|
Back to Top
|
Stability and convergence of spectral methods
|
-
C. Bardos & E. Tadmor
Stability and spectral convergence of Fourier method for nonlinear problems. On the shortcomings of the 2/3 de-aliasing method
Numerische Mathematik 129 (2014) 749-782.
-
J. Goodman, T. Hou & E. Tadmor
On the stability of the unsmoothed Fourier method for
hyperbolic equations
Numerische Mathematik 67(1) (1994), 93-129.
-
D. Gottlieb & E. Tadmor
The CFL condition for spectral approximations to hyperbolic
initial-boundary value problems
Mathematics of Computation 56 (1991), 565-588.
-
E. Tadmor (1991)
Essentially non-oscillatory spectral viscosity
approximations
"Hyperbolic Problems - Theory, Numerical Methods
and Applications", Proceedings of the 3rd International Conference
on Hyperbolic Problems, Vol. II (B. Engquist and B. Gustafsson, eds.),
Studentlitteratur and Chartwell-Bratt (1991), 861-873.
-
D. Gottlieb, L. Lustman & E. Tadmor
Convergence of spectral methods for hyperbolic initial-boundary
value systems
SIAM Journal on Numerical Analysis 24 (1987), 532-537.
-
D. Gottlieb, L. Lustman & E. Tadmor
Stability analysis of spectral methods for hyperbolic
initial-boundary value systems
SIAM Journal on Numerical Analysis 24 (1987), 241-256.
|
Back to Top
|
Spectral viscosity approximations
|
-
E. Tadmor & K. Waagan
Adaptive spectral viscosity for hyperbolic conservation laws
SIAM journal on Scientific Computation 34(2) (2012), 993-1009.
-
B.-Y. Guo, H.-P. Ma & E. Tadmor
Spectral vanishing viscosity method for nonlinear conservation laws
SIAM Journal on Numerical Analysis 39 (2001), 1254-1268.
-
A. Gelb & E. Tadmor
Enhanced spectral viscosity approximations for conservation laws
Applied Numerical Mathematics 33 (2000), 3-21.
-
G.-Q. Chen, Q. Du & E. Tadmor
Spectral viscosity approximations to multidimensional scalar conservation
laws
Mathematics of Computation 61 (1993), 629-643.
-
E. Tadmor
Super viscosity and spectral approximations of nonlinear conservation laws
"Numerical Methods for Fluid
Dynamics IV", Proceedings of the 1992 Conference on Numerical Methods
for Fluid Dynamics, (M. J. Baines and K. W. Morton, eds.),
Clarendon Press, Oxford (1993) 69-82.
-
E. Tadmor
Total-variation and error estimates for spectral viscosity approximations
Mathematics of Computation 60 (1993), 245-256.
-
Y. Maday, S. M. Ould Kaber & E. Tadmor
Legendre pseudospectral viscosity method for nonlinear conservation laws
SIAM Journal on Numerical Analysis 30 (1993), 321-342.
-
E. Tadmor [MR 92b:65076]
Essentially non-oscillatory spectral viscosity
approximations
"Hyperbolic Problems - Theory, Numerical Methods
and Applications", Proceedings of the 3rd International Conference
on Hyperbolic Problems, Vol. II (B. Engquist and B. Gustafsson, eds.),
Studentlitteratur and Chartwell-Bratt (1991) 861-873.
-
E. Tadmor
Shock capturing by the spectral viscosity method
``Spectral and High Order Methods for Partial Differential Equations",
Proceedings of the ICOSAHOM '89 Conference held in Como, Italy 1989
(C. Canuto and A. Quarteroni, eds), North-Holannd (1990) 197-208;
Computer Methods in Applied Mechanics and Engineering 78 (1990),
197-208.
-
Y. Maday & E. Tadmor
Analysis of the spectral vanishing viscosity method for
periodic conservation laws
SIAM Journal on Numerical analysis 26 (1989), 854-870.
-
E. Tadmor
Convergence of the spectral viscosity method for
nonlinear conservation laws
"11th International Conference on Numerical Methods in Fluid Dynamics",
Lecture Notes in Physics, Vol. 323 (D. L. Dwoyer, M. Y. Hussaini, and
R. G. Voigt, eds.), Springer-Verlag (1989) 548-552.
-
E. Tadmor
Convergence of spectral methods for nonlinear conservation laws
SIAM Journal on Numerical Analysis 26 (1989), 30-44.
|
Back to Top
|
Signal and image processing
|
- S. Foucart, E. Tadmor & M. Zhong
On the sparsity of LASSO minimizers in sparse data recovery
Constructive Approximation 57 (2023) 901-919.
Multiscale representations in imaging and PDEs
|
- A. Cohen, R. DeVore & E. Tadmor
Constructions of bounded solutions of div in critical spaces
in ``Multiscale, Nonlinear and Adaptive Approximation II'' (R. DeVore and A. Kunoth, eds), Springer, ISBN: 9783031758010, 2024 pp. 177-200.
-
E. Tadmor
Hierarchical construction of bounded solutions in critical regularity spaces
Communications in Pure & Applied Mathematics 69(6) (2016) 1087-1109.
-
E. Tadmor & C. Tan
Hierarchical construction of bounded solutions of div U=F in critical regularity spaces
"Nonlinear Partial Differential Equations", Proceedings of the 2010 Abel Symposium held in Oslo, Sep. 2010 (H. Holden & K. Karlsen eds.), Abel Symposia 7, Springer 2011, 255-269.
-
P. Athavale & E. Tadmor
Integro-differential equations based on (BV, L1) image decomposition
SIAM journal on Imaging Sciences 4(1) (2011) 300-312.
-
P. Athavale & E. Tadmor
Novel integro-differential equations in image processing and its applications
"Computational Imaging VIII", Proceedings of SPIE meeting held Jan. 2010, San Jose (C. A. Bouman, I. Pollak, P. J. Wolfe eds.), vol. 7533, 75330S.
-
E. Tadmor & P. Athavale
Multiscale image representation using integro-differential equations
Inverse Problems and Imaging 3(4) (2009) 693-710.
-
E. Tadmor, S. Nezzar & L. Vese
Multiscale hierarchical decomposition of images with applications
to deblurring, denoising and segmentation
Communications in Mathematical Sciences 6(2) (2008) 281-307.
-
E. Tadmor, S. Nezzar & L. Vese
A multiscale image representation using hierarchical (BV,L2)
decompositions
Multiscale Modeling and Simulations 2(4) (2004) 554-579.
|
Back to Top
|
Matrix theory -- the numerical radius, power-boundedness and eigen-solvers
|
-
D. Gill & E. Tadmor
An O(N2) method for computing the eigensystem of N x N symmetric
tridiagonal matrices by the divide and conquer approach
SIAM Journal on Scientific and Statistical Computing 11 (1990), 161-173.
-
D. Gill & E. Tadmor
An O(N2) method for computing the eigensystem of N x N symmetric
tridiagonal matrices by the divide and conquer approach; Short communication
Linear Algebra and its Applications 120, (1989), 257-258 .
-
E. Tadmor
The resolvent condition and uniform power-boundedness
"Haifa Conference on Matrix Theory", Report (A. Berman, Y. Censor and
H. Schneider, eds.) Linear Algebra and Its Applications 80 (1986), 250-252.
-
E. Tadmor
Complex symmetric matrices with strongly stable iterates
Linear Algebra and Its Applications 78 (1986), 65-77.
-
S. Friedland & E. Tadmor
Optimality of the Lax-Wendroff condition
Linear Algebra and its Applications 56 (1984), 121-129.
-
M. Goldberg & E. Tadmor
On the numerical radius and its applications
Linear Algebra and its Applications 42 (1982), 263-284.
-
E. Tadmor
The equivalence of L2-stability, the resolvent
condition and strict H-stability
Linear Algebra and its Applications 41 (1981), 151-159.
-
M. Goldberg, E. Tadmor & G. Zwas
Numerical radius of positive matrices
Linear Algebra and its Applications 12 (1975), 209-214.
-
M. Goldberg, E. Tadmor & G. Zwas
The numerical radius and spectral matrices
Linear and Multilinear Algebra 2 (1975), 317-326.
[Acknowledgement]
|
| |
|